傾斜畑地の難透水性層が土壌水分移動に与える影響

Effect of impermeable layer on water movement in a hill slope field

銭谷桂太^{*} 溝口勝^{*} 日戸正敏^{**} 井本博美^{*} 宮崎毅^{*} Zenitani Keita Mizoguchi Masaru Hinoto Masatoshi Imoto Hiromi Miyazaki Tsuyoshi

1. はじめに

高原キャベツの生産地として名高い本州の 群馬県北部地方の畑地では,梅雨期・台風期・ 融雪期における土壌侵食が深刻な問題になっ ている.このうち梅雨期・台風期の土壌侵食の 一因として,畑地の表層直下に難透水性層が存 在して雨水の地中浸透を阻むことが考えられ る.本研究では,土壌流亡が進む傾斜畑地にお いて降雨に対する土壌水分の変化を観測し,難 透水性層の存在を確認し,これが土壌水分移動 に与える影響について調べた.

2. 降雨に対する現地土壌水分の変化観測

(1) 観測方法

2003年6月14日に嬬恋高冷地野菜センター の圃場に土壌情報モニタリングシステム¹⁾を設 置し2003年8月29日まで10分間隔で地温, 土壌水分量,降水量を観測した.地温は熱電対, 土壌水分量はECH₂O水分計を用いて測定した. 圃場の斜面に沿って約3m離れた上流側と下流 側の2ヶ所にピットを掘り,センサーをそ

れぞれ 10cm 20cm 40cm の深さに埋設した. (2) 観測結果

Fig.1 に上流側での観測値を示す.降雨の浸 潤にともない深さ 10cm、20cm の土壌水分量 が順に増加したが、深さ 40cm では変化がなか った.これは深さ 20cm~40cm の間で土壌の 透水性が変化しているためと考えられる.

3. 現地土壌の特徴把握

(1) トレーサー実験

難透水性層の存在を視覚的にとらえるため,上 下流ピットの中間に深さ40cm,内径12mmの 穴をあけ,水溶性の白ペンキを注入した.一定 時間経過後,その断面を観察した. Fig.2 は実

験の結果である.17cm より浅いところでは穴 から周囲土中への浸潤 がみられたが,17cmよ り深いところでは周囲 への浸潤がみられなか った.この結果は深さ 17cm を境に浸潤のパタ

ーンが異なることを示す .Fig.2 Tracer experiment

(2) 断面調査

土壌断面には地表面から黒ボク土,その下に は粘土混じりのレキ層が観察された.(Fig.3) 層の境界は上流側で深さ25cm付近,下流側で 深さ35cm付近だった.土壌物性値をFig.4に 示す。これらより、(1)透水係数は深さ20cm付 近を境に低下すること、(2)山中式硬度は深さ 25cm付近を境に増大すること、(3)深さ27~ 29cmの粘土含有率が高かったことがわかった。

*東京大学大学院農学生命科学研究科 Graduate School of Agricultural and Life Science, The Univ. of Tokyo **高冷地野菜研究センター Alpine Crops Research Center 土壌侵食、難透水性層、土壌水分移動

4. モデルによる現象解明と影響評価

飽和透水係数や水分特性曲線に実測値を用 いて、HYDRUS-2D により難透水性層を有す る傾斜地における土壌水分変化シミュレーシ ョンを行った。境界条件を Fig.5 に示す。土壌 水分量の初期条件を 6/26 の 14:30 の実測値に 設定した。深さ 10cm の結果を Fig.1 に示す。 シミュレーションは降雨に対する土壌水分の 応答パターンとピークの遅れを正確に再現し た.また、このシミュレーションにより得られ た速度ベクトルの時間変化から,浸潤した降雨 は難透水性層上に溜まり,傾斜方向に流れるこ ともわかった.

5. 対応策の提案

難透水性層を厚さ20cmの耕盤層に置き換え、 耕盤層を部分的に破壊した系に強度の降雨を 与えたときの土壌水分移動を予測した。土壌水 分分布の予測結果の一例をFig.6に示す。耕盤 層を部分的に破壊すると、破壊しないものに比 べて、表層土からの流出量は極端に小さくなっ た。(Fig.7)この結果は、難透水性層の部分的 破壊が土壌侵食防止に有効であることを示唆 する。

6. おわりに

現地調査から傾斜畑地には深さ 20cm 付近に 難透水性層が存在することが確認された。シミ ュレーションの結果、この難透水性層を部分的 に破壊することで侵食量を減らせる可能性が あることがわかった。

参考文献 1) 溝口:携帯電話を利用した土壌情 報モニタリングシステム,土壌の物理性,92, 2003

Fig.7 Cumulative seepage boundary flux as a function of time