## 有機肥料施用畑からの温室効果ガス発生と溶脱の同時測定

Monitoring of GHG Emission and Leaching from Cropland Applied with Organic Fertilizer

中村真人 <sup>1)</sup>・藤川智紀 <sup>1)</sup>・柚山義人 <sup>1)</sup>・前田守弘 <sup>2)</sup> ・太田健 <sup>2)</sup> ・森淳 <sup>1)</sup> ・山岡賢 <sup>1)</sup>
Nakamura Masato, Fujikawa Tomonori, Yuyama Yoshito, Maeda Morihiro,
Oota Takeshi, Mori Atsushi and Yamaoka Masaru

<u>1.はじめに</u> 農耕地からの主要な環境負荷には,硝酸態窒素  $(NO_3$ -N)の溶脱による地下水汚染と温室効果ガス  $(CO_2, N_2O)$  の発生などがある.溶脱,温室効果ガス発生および作物生産は独立の関係ではなく,密接に関係しているため,それらの関係の整理を行い,生産量を維持しつつ,負荷を最小限にする栽培技術を検討する必要がある.本研究では,温室効果ガス発生量の測定を行えるように改良した,モノリスライシメータ (Fig.1) を用いた試験を行い,作物生産とそれに伴う

環境への負荷の総合的評価,施用する有機肥料の与える 影響の把握を行った.

2.試験方法 モノリスライシメータを用いた試験法は 前田の方法 <sup>1)</sup>に従った 設置した 11 本の土壌モノリス( 黒 ボク土)にホウレンソウを栽培し,溶脱量,溶脱成分お よび温室効果ガス発生量をモニタリングした、水分条件 を一定とするため,2005年8月に土壌モノリスを水道水 で飽和後,排水した.9月16日に降雨侵入防止フタを外 し,試験を開始し,10月11日に施肥,10月24日に播種 を行い,2006年3月22日に収穫を行った.試験区設定, 施肥量( 千葉県施肥基準準拠 )は Table 1 のとおりである. メタン発酵消化液は,乳牛ふんと野菜汁を原料とするも のである、牛ふん堆肥は消化液と同じ乳牛ふんを原料と するもので,副資材としてオガクズを用いているため, C/N 比が高めである. 汚泥コンポストは副資材に籾殻を 用いたコンポストである (Table 2). 各資材は窒素が 25kg/10a となるように施用し,リン酸,カリの不足分は, 熔リン,塩化カリウムで補った.トレーサーとして,土 壌中で NO3 と類似の動きをする, 臭化物イオン(Br)を 無施肥区と化成肥料区に添加した.

Table 1 各区の施肥設計 Design for fertilizer application

|          |            | •                   |                        |                     |                          |
|----------|------------|---------------------|------------------------|---------------------|--------------------------|
|          | 無施肥区       | 化成<br>肥料区           | 牛ふん<br>堆肥区             | メタン発酵<br>消化液区       | 汚泥コン<br>ポスト区             |
| 反復数      | 2          | 3                   | 2                      | 3                   | 1                        |
| 施肥<br>資材 | 臭化加加       | 硫安<br>熔リン<br>臭化加弘   | 牛ふん堆肥<br>熔りん<br>塩化カリウム | メタン発酵<br>消化液<br>熔りん | 汚泥コンポスト<br>熔りん<br>塩化カリウム |
| 施用量      | カリ70kg/10a | 窒素,リン酸,カリ 各25kg/10a |                        |                     |                          |

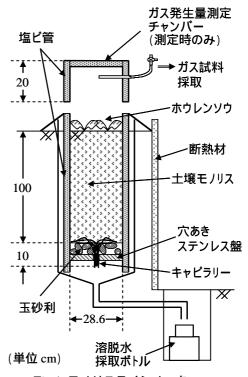



Fig.1 モノリスライシメータ Monolith lysimeter

Table 2 有機肥料の成分 Composition of organic fertilizers

|                               | メタン発酵<br>消化液 | 牛ふん<br>堆肥 | 汚泥コン<br>ポスト |
|-------------------------------|--------------|-----------|-------------|
| 含水率                           | 98           | 58.8      | 32.3        |
| T-N                           | 2400         | 1.4       | 3.5         |
| NH <sub>4</sub> -N            | 1700         | 0.032     | 1.0         |
| NO <sub>3</sub> -N            | 21           | 0.0       | 0.063       |
| P <sub>2</sub> O <sub>5</sub> | 1300         | 0.87      | 2.5         |
| K <sub>2</sub> 0              | 3000         | 0.94      | 0.3         |
| T-C                           | 9400         | 42.8      | 35.3        |
| C/N比                          | 3.9          | 30.6      | 10.1        |

単位:消化液...mg/L,

牛ふん堆肥・汚泥コンポスト・・・乾物重量%

1)農業工学研究所 National Institute for Rural Engineering 2)中央農業総合研究センター National Agricultural Research Center キーワード:窒素循環,炭素循環,温室効果ガス,溶脱,メタン発酵消化液,汚泥コンポスト

溶脱水は,2週間に1度採水し,水量を測定し,水質分析を行った.分析項目はNO3-N,全窒素,

Br 等である.また,土壌モノリス表面からの温室効果ガスである,亜酸化窒素( $N_2O$ ),二酸化炭素( $CO_2$ )発生量はクローズドチャンバー法で測定した.測定は施肥直後では  $1\sim4$  日間隔,その後は 2 週間間隔とした.

## 3. 試験結果

溶脱水量 Fig.2 に,試験開始からの積算降水量および積 響響 算溶脱水量を示す.76~111 日目までは降雨が少なかったため,溶脱はなかった.5 試験区の溶脱水量はほぼ同様に推移しており,土壌の透水性の違いが小さいといえる.溶脱量は降水量の約7割程度であり,降水のうち,およそ3割が蒸発散したものと考えられる.

<u>溶脱水の NO3-N 濃度</u> Fig.3 に NO3-N 濃度の推移を示 (7.00) す 試験開始から濃度が上がり続け ,180 日目には 50mg/L (1.00) 程度になった.試験開始直後の濃度が低いのは,水道水 (0.00) で飽和した影響であると考えられる .150 日目の時点で, (0.00) 無施肥区と化成肥料区で Br 濃度は上昇し始め ,施肥され (0.00) た窒素も溶脱し始めていると推測されるが,無施肥区と その他の区で (0.00) 不濃度に明確な差が出ておらず ,施肥 した窒素の影響は限定的であると考えられる .

温室効果ガスの発生量  $N_2O$  および  $CO_2$  の累積発生量を  $^{4.0E+05}$  Fig.4,Fig.5 に示す. $N_2O$  発生量は各区とも施肥後  $2 \sim 4$   $^{6}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$ 

 $CO_2$  の累積発生量は,炭素を含む有機肥料を施用した  $O_2$   $O_3$   $O_4$   $O_5$   $O_6$   $O_$ 

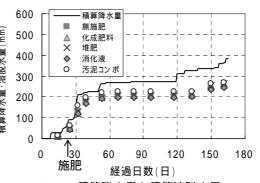



Fig.2 積算降水量と積算溶脱水量 Cumulative precipitation and leachate

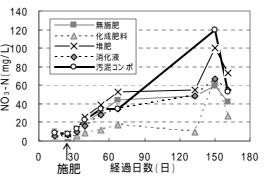



Fig.3 溶脱水中の硝酸態窒素濃度の推移 NO<sub>3</sub>-N concentration in leachate

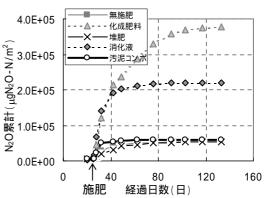
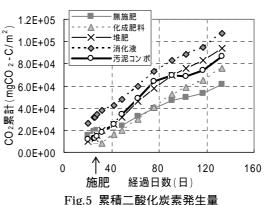




Fig.4 累積亜酸化窒素発生量 Cumulative N<sub>2</sub>O emission



Cumulative CO<sub>2</sub> emission

参考文献 前田 ( 2005 ): 第 3 回環境保全型農業技術研究会「環境保全型農業を構築するための土壌肥料新技術」, pp. 46-55