土壌カラム実験における水分量・電気伝導度・温度の非破壊的連続測定 Undisturbed and continuous measurement of water content, electrical conductivity, and temperature in a soil column

落合 博之*, 登尾 浩助*, 溝口 勝** Hiroyuki Ochiai, Kosuke Noborio, Masaru Mizoguchi

.はじめに

本研究では温度勾配条件下における土壌中 での水分・溶質の移動について調べた。これは、 Nassar ら(1992)によって研究された水分と 溶質の移動の試験に類似している。彼らの実 験ではいくつもの供試体を用いて一定時間経 過後に土壌カラムを分割して測るというもの である。このような方法ではすべての供試体 が同一の条件下にある可能性はとても低いと 考えられる。本研究では単一のカラムに Thermo Time Domain Reflectometry(Thermo TDR 法)を用いて土壌水分量・電気伝導度 (EC)・温度の経時変化を非破壊的に測定した。

.実験方法

本研究では土壌カラムを恒温槽内に設置 して行った。カラムは外径 90mm、内径 78mm の透明なアクリルパイプを 25 ミリ間隔に 切断して作成した。カラムに3線式サーモ TDR プローブを取り付けた。また、締め固 めの際にプローブが曲がらないように、プ ローブをカラムの両端で固定した。プロー ブのステンレス管内には温度測定のための 熱電対と加温用ヒーターを挿入した。サー モ TDR プローブは Noborio ら (1996) によっ て開発されたもので、Toppら(1980)によっ て発表された TDR 法による従来の土壌水分、 塩分測定に加えて、熱伝導率・体積熱容量 を非破壊的かつほぼ同時に測定可能である。 実験では、サーモ TDR プローブを取り付け たカラムとただのカラムを交互に9つ繋げ、 これに一定水分量に調整した土壌を充填し、 このカラムの両端をアルミ板で密閉固定し

た。このアルミ板にペルチェ素子を設置す ることによってカラム内に温度勾配を自由 に作れるようにした。これによって、本カ ラム実験では密封状態で様々な温度勾配条 件下で土壌水分量と溶質濃度の変化を同時 にしかも非破壊的に測定できる。実験では 豊浦砂を d=1.5mg/m³になるように充填し た。恒温槽内の温度を 20.0 に、カラム両 端の温度をそれぞれ 41.2 、1.5 に設定 した。ここでは温端側からカラム a、b、c、 d の順でもっとも冷端側のカラムを e とし た。0.2mol/L の KCI 溶液を用いて供試土を =0.3m³/m³に調整し、水分量、EC、温度変

化を測定し考察した。

.結果と考察 図 1 から温度は測定開始 2 時間以降はほと

んど変化がなくなり定常状態に達したと考え られる。また、温度勾配が直線的になったこ とから特定位置からの熱の漏えいはないと考 えられる。

図2では特定の時間を選んでその時々でそ れぞれのカラム内の土壌水分量を示す。最も

*明治大学, Meiji University, **東京大学, University of Tokyo, サーモ TDR プローブ, 土壌水分量, 電気伝導度 冷端に近いプローブ e で土壌水の移動がもっ とも大きいことがグラフの振幅の大きさから わかる。測定開始 2.5 時間で冷端よりのカラ ム内(e)での土壌水分量が最高値を示しその 後減少した。カラム c では土壌水分量が 0.28 から 0.29m³/m³ とほぼ変化しなかった。温端 側カラムでは土壌水の動きが冷端側に比べて 小さいことがわかる。

図3には実験終了後に炉乾燥法によって測 定した各土壌カラム内の土壌水分量とTDR法 .参考文献

- Nassar, I.N., R. Horton, and M.M.A. Globus. : Simultaneous Transfer of Heat, Water, and Solute in porous Media: . Experiment and Analysis. Soil Sci. Soc. Am. J. 56:1357-1365 (1992)
- Noborio, K., J.K. McInnes, and L.J. Heilman: Measurements of soil water content, heat capacity, and thermal conductivity with a single TDR probe. Soil Sci. 161:22-28 (1996)

で実験終了直前に測定した土壌水分量の比較 を示した。 <0.285m³/m³では TDR 法での水分 量が過大な評価を示した。このことから図 2 で示した温端付近での土壌水分量も TDR 法に よって過大に評価されたと考えられる。

図4 プローブごとでの電気伝導度の経時変化

図 4 では温端に近いカラム a での電気伝導 度が上昇し続けているのが分かる。これは 8 日経ってもさらに上昇し続けており、原因は 以下の3つの可能性が考えられる。 十壤水 分量が減少してその分濃度が上昇した、 7K の移動と共に KCI が移動した、あるいは 温 度勾配によって KCI が分子拡散によって移動 した。図2で示した土壌水分量の測定結果と の関連で、温端で起きた土壌水分量の減少に 伴って電気伝導度が上昇している。また冷端 では土壌水分量の増加とともに電気伝導度が 低くなったことから水分は主に水蒸気態で移 動し、温端側から冷端側に水蒸気態で移動し てきた水分量の増減によって凝縮・希釈され たと考えられる。

Topp, G.C., K.K. Davis, and P.A. Annan .:

Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour. Res. 16:574-582 (1980)

.謝辞

本研究は(財)日本宇宙フォーラムが推奨し ている「宇宙環境利用に関する地上研究公募」 プロジェクトの一環として行ったものである。

^{*}明治大学, Meiji University, **東京大学, University of Tokyo, サーモ TDR プローブ, 土壌水分量, 電気伝導度