灌漑水由来の懸濁態放射性セシウムの水田内動態

Behavior of particulate radiocesium via irrigation water in paddy field

○稲葉麟士¹·吉川夏樹²·鶴田綾介³·青山尚樹⁴·上山直樹⁵・原田直樹²・宮津進²・

鈴木啓真¹·松原達也¹·申文浩⁶·五明智夫⁷·伊藤健太郎⁷·野川憲夫⁸

Rinji INABA, Natsuki YOSHIKAWA, Ryosuke TSURUTA, Naoki AOYAMA, Naoki UEYAMA, Naoki

HARADA, Susumu MIYAZU, Yoshimasa SUZUKI, Tatsuya MATSUBARA, Moono SHIN,

Tomo GOMEI, Kentaro ITO, Norio NOGAWA

1. はじめに

筆者らの調査で、玄米中の放射性セシウム (以下, Cs) 濃度は水田の灌漑水流入点付近で 高くなる傾向が確認され、灌漑水がイネ体の Cs 濃度上昇に寄与する可能性が示された¹⁾. し かし、そのメカニズムは明らかでなく、灌漑水 中の Cs の吸収のほか、水温、流速分布など多 様な要因の検討が求められている.本研究では、 こうした要因のうち、灌漑水中の懸濁態 Cs の 水田内での挙動に着目し、各種実験によって検 証した.

2. 研究方法

懸濁態Csのイネへの移行を検証するため、(1) 現場圃場における灌漑水流下実験、(2)懸濁物 質の沈積範囲を特定する室内水田模型実験を 実施した.

2.1 現地圃場における灌漑水流下実験

東京電力福島第一原子力発電所から北西約 10 km に位置する請戸川流域の試験圃場を波板 で5m×80mに区切り,流下方向を一次元的に 制限した試験区を整備した(図1).流入点から 距離に応じて田面水の採水と土壌採取(深さ10 ~15cm)を実施し,Ge半導体検出器を用いて 溶存態・懸濁態Cs濃度,土壌中Cs濃度を測定 した.なお,本実験は2016年,2017年,2018 年と同一の圃場で実施した.

2.2 室内水田模型実験

新潟県内で採取した水田土壌(¹³⁷Cs 濃度:

図2 室内水田模型実験概要

水田模型

5 (m)

18.7±1.79 Bq/kg)を充填した水田模型(5 m×4 m) に Cs 濃度の高い懸濁物質を灌漑水とともに流 下させ,水田土壌への負荷量と集積範囲を検討 した.貯水槽,給砂槽及び水田部で構成した装 置(図 2)の水田部に,懸濁物質として大柿ダ ム底泥(¹³⁷Cs 濃度:1.54×10⁵ Bq/kg)を添加し た水道水を 78 時間供給した後,土壌のサンプ リングを行って試料中の¹³⁷Cs濃度を測定した. 本実験は,稲株に見立てた割り箸の束を縦横 30 cm 間隔で設置したイネ栽植条件,およびイネ 無栽植条件 2 つのパターンを用意し,栽植の有 無による影響を検証した.なお,灌漑水の供給

¹ 新潟大学大学院自然科学研究科 Graduate school of science and technology, Niigata University

² 新潟大学自然科学系 Institute of Science and Technology, Niigata University

³ 株式会社建設技術研究所 CTI Engineering Co., Ltd.

⁴ 大同コンサルタンツ株式会社 Daido Consultants co., ltd.

⁵ 新潟県農地部 Department of Agriculture, Niigata Prefectural Government,

⁶ 福島大学農学群食農学類 Faculty of Food and Agricultural Sciences, Fukushima University

⁷ 愛知時計電機株式会社 Aichi Tokei Denki Co.,Ltd

⁸ 福島大学うつくしまふくしま未来支援センター Fukushima Future Center for Regional Revitalization, Fukushima University

キーワード 放射性セシウム 水田 農業用水

流量は0.36 L/s とし, SS 濃度は10 mg/L とした.

3. 結果・考察

3.1 現地圃場における灌漑水流下実験

2016年度から2018年度における灌漑期間中の田面水中溶存態¹³⁷Cs濃度を図3に,懸濁態¹³⁷Cs濃度を図4に示す.溶存態¹³⁷Cs濃度は流下距離に応じておおむね線形的に低下するのに対し,懸濁態¹³⁷Cs濃度は流入点から1m地点で1.37×10⁻¹ Bq/L,5m地点では6.0×10⁻² Bq/Lと半分以下の濃度となり,流入点近傍で急激に濃度が低下した.また,懸濁態¹³⁷Cs濃度と土壤中¹³⁷Cs濃度(図5)の関係から,流入点近傍の土壤中¹³⁷Cs濃度は,灌漑水由来の懸濁態¹³⁷Csの影響を強く受けて上昇したことが示唆された.

3.2 室内水田模型実験

イネ栽植条件とイネ無栽植条件の土壌中 ¹³⁷Cs 濃度上昇値の分布を,それぞれ図 6,図 7 に示す.イネ栽植条件では,流入点から 0.6 m 地点で¹³⁷Cs 濃度が最も上昇し,流下方向直線

上のみならず,その周辺の土壌中¹³⁷Cs 濃度も 上昇した.これは流入水が稲株に衝突し,流れ に乱れが生じたことが原因だと考えられる.一 方,イネ無栽植条件の場合,流下方向直線上に 懸濁態¹³⁷Cs が堆積し,流入点から 1.5 m 地点に 局所的な堆積傾向が見られた.流入点から 50 cm の地点では流入水による洗掘現象が起きた ため,両条件ともに懸濁態¹³⁷Cs の堆積量は少 なかった.また,¹³⁷懸濁態 Cs の流入量に対し て,栽植条件は約 94%,無栽植条件は約 71% が水田部に堆積した.

4 まとめ

田面水中の懸濁態 Cs 濃度変化から,流入点 での灌漑水由来の懸濁態 Cs の土壌への沈積が 示唆された.また,室内水田模型実験から,流 入点近傍の土壌中 Cs 濃度を局所的に上昇させ ることが判明した.イネ栽植の有無による結果 の比較から,栽植有りは栽植無しよりも流入点 に近い地点に懸濁態 Cs が堆積することが明ら かとなった.また,懸濁態 Cs の堆積率から稲 の栽植によって懸濁態 Cs の流下を抑制する効

果があることが示唆された.

参考文献

1) 稲葉ら(2018): 平成 30 年度農業農村工学 会大会講演要旨集, pp.788-789