熱パルス多機能センサーによる土壌水分・塩分・熱移動特性の同時測定 Simultaneous measurement of water flow, solute and heat transport properties using Multi-Functional Heat Pulse Probe

森 也寸志*,アネッテ P.モルテンセン**,ヤン W.ホフマン***,ジェラルド J.クルーティンバーグ**** Yasushi Mori, Annette P. Mortensen, Jan W. Hopmans, Gerard J. Kluitenberg

1.はじめに 水分・塩分・熱移動は土壌中の移 動現象の多くの部分を司る。しかしこれらの特 性値は時間・空間変動性が強く,移動特性間の 関係を探るのに大きな障害となる。従って可能 ならばこれらの特性を同場所,同体積で同時に 計測することが望ましい。本研究では,6本の 針からなる多機能センサーを開発し,水分・物 質・熱移動特性の計測を試みた。

<u>2.理論</u>(Fig.1 を参照)

熱移動:(針2:ヒータ,針1,3,5,6: 温度センサーを使用)

無限長線源から時間 t o の間に放出される熱パ ルスを距離 r のところで測定する時の解析解 は,

$$\Delta T(r,t) = \frac{q'}{4\mathbf{p} C \mathbf{k}} \left[Ei \left(\frac{-r^2}{4\mathbf{k}(t-t_0)} \right) - Ei \left(\frac{-r^2}{4\mathbf{k} t} \right) \right]$$

である。T:温度上昇,t:時間,t₀:パル ス時間,r:ヒータからの距離,-Ei(x):指数 積分,k:熱拡散係数,C:体積熱容量である。

土壌水分は,体積熱容量が土壌構成成分の熱 容量の和で表されることから推定する。つまり,

$$C = \mathbf{r}_b c_s + C_w \mathbf{q}$$

r:物質の密度,c:比熱,b,s,w はバルク土 壌,土壌,水を表す。

溶質移動:(針1,4:印可電極,針2,3測 定電極を使用)バルクの土壌の電気伝導度 (EC)は固相と液相の特性から決まり,

$$ECb = ECw(a\boldsymbol{q}^2 + b\boldsymbol{q}) + ECs$$
で表される。

Muatem-van Genuchten 式を仮定し,マルチ ステップ流出法によって推定した。

3.実験の方法 Fig.1 に示すデザインのセンサ ーを自作し,4つの温度センサーについて,ヒ ータ・温度センサ間有効距離 r_{eff}を水(寒天) を基準物質として求めた。

P Heater ◇ Thermistor ● Four-electrode

Fig.1 Multi-Functional Heat Pulse Probe

Fig.2 Experimental setup

フィルターの目詰まりを防ぐため洗浄した 鳥取砂丘砂を Fig. 2 に示すカラムに乾燥密度

*島根大学,**コペンハーゲン大学,***カリフォルニア大学デービス校,****カンザス州大学 *Shimane University, **Copenhagen University, ***University of California, Davis, ****Kansas State University. キーワード:土壌の熱的性質,熱パルス法,多機能センサー 1.63Mgm³で充填し,二酸化炭素を飽和させた 後に 0.015CaCl₂mol/L 水溶液で飽和させ,完全 飽和をした。20 の恒温室でマルチステップ流 出法試験を行うと同時に熱パルスを与えなが ら水分量,熱的特性,塩分濃度を求め,それぞ れの解析を行った。同様の手順で 0.03,0.05mol/L の水溶液について実験を繰り 返した。なお,鳥取砂丘砂の比熱はDifferential Scanning Caloriemetry によって計測し, 0.795 Jg⁻¹K⁻¹@20 とした。

<u>3.結果と考察</u>寒天の体積熱容量・熱拡散係数を既知とし,式1でr_{eff}のみを最適化したところ,変数がひとつしかない厳しい条件にも関わらず温度上昇から下降まで5分間にわたり理論値と実測値はきわめて良く一致した。

排水試験から求められる透水係数・土壌水分 特性曲線とM-F HPPで水分を独立に求めた結 果はFig.4のようである。また,MF-HPPで求 めた水分とECの関係は,係数r²=0.994で回帰 可能であった。土壌の熱的性質はFig.6に示す とおりである。これらのデータはそれぞれの溶 液濃度について一回の排水試験から求められ ており,水分・塩分・熱移動特性全てが比較で きるようになっている。同測定体積・同時間に 計測されており,単一の測定方法より特性値相 互間の関係を見るのに適していると言える。し かしながら本測定方法は接触の影響を受ける ことが予想され,これについて詳細な解析が今 後必要である。

<u>謝辞:</u>鳥取砂丘砂をお送りいただいた鳥取大 学乾燥地研究センター井上光弘先生に感謝い たします。なお本研究の一部は日本学術振興会 海外特別研究員(平成13年度)の補助を受け て行われた。

Fig.3 Calibration of effective "r"

Fig.4 Measured and Optimized hydraulic properties. Markers show M-F HPP data.

Fig. 5 Electrical conductivity of Tottori Dune

Fig.6 Thermal properties of Tottori Dune sand.