軸対称地盤の浸透破壊に関する実験的考察 Experiments on seepage failure of soil in an axisymmetric condition

田中勉・浦田憲・坂井田貴士Tsutomu Tanaka, Ken Urata and Takashi Sakaida

1. 序論

地下水位の高い地点における土木構造物の 建設においては浸透破壊が問題となる。ここで は、軸対称浸透破壊実験を行い、変形開始時及 び破壊時水頭差について考察を行った。

2. 実験試料及び装置

実験試料には均一な細砂 (琵琶湖砂 3)を用い た。実験装置を Fig.1 に示す。下流側の地盤層 厚 T, 矢板の根入れ深さ D, 矢板内の掘削深さ d, 上流側地盤層厚 T+d を変化させた 22 ヶの実 験 E0101 ~ E0122 を行った。

2. 軸対称地盤の浸透破壊実験結果

(1) 水頭差の増加に伴う地盤形状及び等ポテン シャル線分布の変化と破壊形態 実験 E0122 に 関して,水頭差 Hの増加に伴う地盤形状及び等 ポテンシャル線分布の変化を Fig.2 に示す。H が増加してゆくとき,最初は地盤には何の変化 もない。変形開始時水頭差 H_yに達すると,地盤 は上流側でリング状に沈下し,下流側でリング 状に隆起する (矢板の根入れ深さが大きいとき には下流側地盤全体が隆起する)。さらに H が 増加すると,上流側の沈下,下流側の隆起が大 きくなる。また,等ポテンシャル線分布 (Fig.2) は H の増加につれて下流側にゆがんでくる。H が破壊時水頭差 H_fに達すると,上流側地盤の砂 粒子が矢板下端を回って移動し,下流側地盤は 砂粒子が吹き上がり破壊する。

(2) $H-Q_{15}$ 曲線 実験 E0122 に関して,水頭差 H と 15 時の浸透流量 Q_{15} の関係を Fig.3 に示 す。 $H-Q_{15}$ 曲線は, H が増加するにつれて直線関 係からずれ非線形になる。非線形になる点 $(H-Q_{15}$ 曲線の変曲点)における H の値を流量急 増時水頭差 H_d とする。 $H-Q_{15}$ 曲線は初期の直線 関係からずれ,徐々に流量の増加割合が減少し, 浸透流量が回帰直線よりも小さくなる。

Fig.1 実験装置の概略図

[実験 E0122 (T = 44.9cm, D = 25.1cm, d = 0.0cm; $H_y = 32.4$ cm, $H_f = 70.4$ cm)]

神戸大学農学部 (Kobe University), キーワード:軸対称地盤・地盤の変形・浸透破壊

Fig.4 D/T と $H_c\gamma_w/T\gamma'$ の関係

(3) 変形開始時水頭差の算定 光波測定器を 用いて上下流の地盤表面高 Y を測定し, 水頭差 H との関係を調べた。そして, 流量急増時水頭 差 H_dは変形開始時水頭差 H_y(上流側 H_{yu},下流側 H_{yd})とほぼ等しくなることがわかった¹⁾。

(4) 変形開始時水頭差と破壊時水頭差

a. 掘削のない地盤 Fig.4 に根入れ比 D/T と限 界水頭差 H_c の無次元量 $H_c\gamma_w/T\gamma'$ の関係を示す。 H_y は Prismatic failure による理論限界水頭差 H_{PF} とほぼ一致している。また D/Tの増加に伴い $(H_f - H_y)/H_y$ が増加する。

b. 掘削のある地盤 Fig.5 に上流側地盤厚が 40 cm の場合における, 掘削比 d/(D+d)と限界水頭 差 H_c の無次元量 $H_c\gamma_w/(T+d)$ の関係を示す。掘削 地盤の場合も H_y と H_{PF} がほぼ一致する。また, $(H_f - H_y)$ は d/(D+d)に関わらずほぼ一定値 $(H_f - H_y)$ ≈ 20cm となる。このように, $(H_f - H_y)$ の値は 下流側ではなく上流側矢板根入れ深さ (D+d)

Fig.5 d/(D+d)と $H_c\gamma_w/(T+d)$ の関係 ($D \approx 40$ cm)

に影響を受けると考えられる。すなわち、変形 から破壊に至るまでの水頭差に関する余裕 $(H_f - H_y)$ は上流から下流へ供給される砂の潜在的供 給量に影響される (Self stabilizing effect)。

Fig.6 に、下流側矢板根入れ深さを一定 ($D \approx 10$ cm)としたときの、上流側矢板根入れ深さの無次元量 (D+d)/ $D \ge H_{y\gamma_w}/D\gamma'$ の関係を示す。 $H_{y\gamma_w}/D\gamma'$ は (D+d)に関係なくほぼ一定となる。 すなわち、変形開始時水頭差 H_y は下流側矢板根入れ深さに影響を受けると考えられる。 4. 結論

軸対称浸透破壊実験を行い次の結論を得た。
(1) *H*_yは *H*_dとほぼ一致する。

(2) *H_y*は Prismatic failure による *H_{PF}*と一致する。
(3) *H_y*は矢板の下流側根入れ深さ *D*,余裕 (*H_f*-*H_y*)は上流側根入れ深さ (*D*+*d*)によって決まる。
参考文献 1) 田中 勉他: 農土学会大会, 218-219, 2002.

Fig.6 (D+d)/D と $H_y\gamma_w/D\gamma'$ の関係