自動灌漑装置とかけ流し灌漑における水田農薬の流出への影響
The Effects of Irrigation and Drainage Management on Pesticide Runoff from Paddy Field

○ 渡辺裕純, 建川洋次, 木村隆, 加藤誠, 鈴木創三
○ Hirozumi WATANABE, Youji KAKEGAWA, Tekashi MOTOBAYASHI, Makoto KATO and Sozoh SUZUKI

【はじめに】
今日、農業生産に伴う農薬及び肥料の流出による水質汚染は、飲料水汚染への懸念ばかりではなく河川や湖沼の生態に影響を与える問題の一つである。近年、水田で使用された農薬の動態及びその予測についていくつかの調査研究がなされてきている1)。散布直後の水田流出水の農薬濃度は数 ppm にまで達し、水田地帯を流れ込む小河川では数十 ppb に達することがあるので藻類の成長阻害等の河川生態への影響が懸念される。また 1998 年に環境庁が発表した環境ホルモン戦略計画 SPEED’98 では、内分泌乱作用を持つと疑われる約 70 物質の内、約 40 物質が農薬であり、その約 1/2 すなわち登録されている農薬である。それらの調査・研究を背景に農業のほかに非流出及び河川・湖沼での環境動態の把握及び農薬流出の制御方法が早急に確立される必要がある。本研究では自動灌漑装置とかけ流し灌漑により管理された水田における水田農薬の流出への影響を半壇実験により評価した。

【方法】
水田用除草剤の動態モニタリングは、東京農工大学 本町農場水田において 2001 年 5 月 21 日の除草剤散布日より、35 日間行われた。実験は壇には地下水を水源とし、パイプラインによる灌漑施設を有した 0.137ha (28m x 28m) の水田の壇を 2 ブロット使用した。一つは自動灌漑装置を用いて、半壇排水を制御した最適管理法としての止水管理 (A1 区)、一つは、常時灌漑によるワーホースが固定的に掛流し管理 (CI 区) をそれぞれに処理区に設定し実験をおこなった。A1 区の自動灌漑装置には、国内で開発された栄太郎を用いた。両区の排水溝には三角堰が取り付けられ、その水田土壌表面から堰の幅まで水位が足しながれ A1 区が 7.5cm、CI 区が 3.9cm と設定した。

田面水深、水田排水量、灌漑水質、降雨量をモニタリング機器により直接計測し、蒸発散量は A1 区に設置した稲 4 株植えたライシメーターにより推定した。また田面水の降下浸透量は水収支計算式より算出した。田植え 8 日後、除草剤のオーカ初期 (3.5% のメフェナセット、1.5% のダムロン、0.17% のベンツルフロメチルを含む) を 3kg/10 アールの散布率で散布を行った。また、農薬散布前、1、3、7、14、21、28、35 日日に田面水と土壌表層 1cm のサンプルを行い冷凍保存した。採取したサンプルは、ろ過、抽出、希釈等の前処理を行い、大塚化成 (株) とヤトロン (株) より提供されたメフェナセットの農薬分析 (ELISA) キットを用いて農薬濃度の定量を行った。

【結果】

表 1 に A1 区と CI 区の灌漑管理の違いによるモニタリング期間中の水収支を示す。農薬散布後 2 週間において 2、3、6、10 日日に 1.65、3.30、1.30、2.85cm の比較的大きな降雨

東京農工大学, Tokyo University of Agriculture and Technology, キーワード: 水田, 農薬, 自動灌漑装置
表 1. AI区と CI区の水収支における日平均及びモニタリング期間合計量。

<table>
<thead>
<tr>
<th></th>
<th>日平均 (cm)</th>
<th>合計 (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>田面水深</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>濕潤水量</td>
<td>0.6</td>
<td>23.2</td>
</tr>
<tr>
<td>排水量</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>浸透量</td>
<td>1.1</td>
<td>39.2</td>
</tr>
<tr>
<td>降雨量</td>
<td>0.55</td>
<td>19.8</td>
</tr>
<tr>
<td>蒸発散量</td>
<td>0.2</td>
<td>7.2</td>
</tr>
<tr>
<td>CI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>田面水深</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>濕潤水量</td>
<td>2.6</td>
<td>93.4</td>
</tr>
<tr>
<td>排水量</td>
<td>0.8</td>
<td>27.5</td>
</tr>
<tr>
<td>浸透量</td>
<td>2.2</td>
<td>77.6</td>
</tr>
<tr>
<td>降雨量</td>
<td>0.55</td>
<td>19.8</td>
</tr>
<tr>
<td>蒸発散量</td>
<td>0.2</td>
<td>7.2</td>
</tr>
</tbody>
</table>

图 1. AIとCIプロットの田面水中メフェナセット(MF)濃度 (mg/l) と CIプロット排水中のメフェナセット(MF) 濃度及びその流出量(％散布量)。

【まとめ】
自動灌漑装置による水田ます場の水管理は農薬の地区外流出制御に大きく貢献することができる。しかしこか流し管理の場合は、降雨等により農薬流出が助長される懸念が指摘される。メフェナセットの流亡抑制において、特に農薬散布初期の田面排水を抑制する止水管理が重要である。

【参考文献】
1. 渡邉裕典・髙木和広 農土論集 No.209, pp43 – 50 (2000.10)