作物群落構造を考慮した施設畑蒸発散シミュレーションモデルの構築

Evaluation of Evapotranspiration in a Greenhouse using a Simulation Model Considering Crop Canopy Structure

原口智和* 森 健* 中野芳輔* 舟越 保*

HARAGUCHI Tomokazu*, MORI Ken*, NAKANO Yoshisuke* and Tamotsu Funakoshi*

はじめに

農地における水消費機構は、作物群落の 水消費環境,つまり土壌の水分・熱環境お よび微気象環境に依存する.施設畑におい ては, 点滴灌漑やラインソース灌漑による 土壌水分管理が行われることが多く、これ らの灌漑手法の導入は水資源の有効利用に 繋がる.このような部分灌漑が実施される 場合,土壌水分は不均一な三次元的分布を 呈する.一方,作物蒸散と土壌面蒸発の両 過程の主要なエネルギ源である日射の作物 群落内環境は、群落の幾何学的構造(葉面 積指数,畝の方位角など)および作物体の 光学的特性(反射,吸収,透過)の影響を 受けて複雑に形成される.ゆえに,水消費 環境が時空間的に変化しやすい施設畑にお ける水消費機構の解明には、作物群落の複 雑な日射環境を正確に捉えることが重要と 言えよう.ここでは,ビニールハウスに栽 培したダイズ群落を対象に,矩形チューブ モデルを用いて群落を表現し、その群落の 日射環境を推定する.さらに,この日射透 過モデルと土壌中の水分・熱輸送モデルを 組み合わせることにより,蒸発散量の算定 を行う.

シミュレーションモデルの構成

計算の対象は成熟期の大豆群落であり, その草高は約1m,葉面積指数は4.7 である.群落は,南北向きに延びた幅1mの単 位作物列が,東西方向に3つ並んだ構造と なっており,これを矩形チューブモデルで 表現した.

作物蒸散モデル:作物葉群を Big leaf で表

し,その熱収支から蒸散量,葉面温度を算 定する.作物遮断日射量は,日射透過モデ ルを用いて求める.

光合成固定や植物体貯熱が無視できる場合, Big leaf の熱収支は次式で表される.

 $R_{np}=T_r+H_p$ (1)

 ここで, R_{np} は葉群純放射量(=吸収量-射

 出量), T_r は潜熱輸送量(蒸散量), H_p は顕

 熱輸送量である. T_r および H_p は次式によっ

 て算定する.

$$T_r = 2\ell A \frac{0.622\rho_a}{P} \frac{e_s(T_l) - e_a}{r_{la} + r_s}$$
 (2)

$$H_p = 2A\rho_a c_p \frac{T_l - T_a}{r_{la}}$$
 (3)

ここで, ℓ は水の蒸発潜熱, A は Big leaf の葉面積, ρ_a は空気の密度, c_p は大気の定 圧比熱, P は大気圧, $T_l \ge T_a$ は葉面温度と 気温, $e_s(T_l) \ge e_a$ は葉面の飽和水蒸気圧と大 気の水蒸気圧である.葉面境界層抵抗 r_a お よび蒸散抵抗 r_s は,それぞれ,風速の関数, および土壌水分と短波放射量の関数で与え る.葉群純放射の射出成分は長波放射であ るので,次に述べる放射環境モデルによっ て吸収放射量を予め求め,その値と式(1), (2),(3)から,逐次代入法によって葉 面温度を決定する.

放射環境モデル:作物群落に入射される短 波・長波放射の減衰透過特性から,葉群純 放射量を算定する.ハウス内に透過する日 射量は,壁面の光学特性から算定可能であ るが,ここでは計算時間短縮のために実測

^{*}九州大学大学院農学研究院 / *Faculty of Agriculture, Kyushu Univ. キーワード:蒸散,土壌面蒸発,作物群落構造,シミュレーション,施設畑

値を用いる.長波放射については,ハウス 壁面,地表面および Big leaf 表面の温度か ら射出量を計算する.

土壌の水分・熱輸送モデル:土壌中の水分 および熱輸送方程式を差分法によって解く.

$$\frac{\partial \theta}{\partial t} = \nabla \cdot (D_{\theta} \nabla \theta) + \nabla \cdot (D_T \nabla T) + \frac{\partial k}{\partial z} \quad (4)$$

$$C_v \frac{\partial T}{\partial t} = \nabla \cdot (\lambda \nabla T) + \rho \ell \nabla \cdot (D_v \nabla \theta) \quad (5)$$

ここで, θ は体積含水率, D_{θ} および D_{T} は 土壌水分勾配および地温勾配に係る土壌水 分拡散係数,kは透水係数,Tは地温, C_{v} は 体積熱容量, λ はみかけの熱伝導率, D_{v} は 水分勾配に係る水蒸気拡散係数, ρ は水の 密度である.土壌面到達日射量は,日射透 過モデルを用いて求める.

入力データ:気温,湿度,日射量および風 速については,ビニールハウス内での実測 値を用いる.気温および湿度のデータは, Big leafの熱収支計算では高度1.0mにおけ る値を,地表面の熱収支計算には高度0.2m における値を用いた.また,風速に関して も,実測結果に基づいて,Big leaf と地表 面で異なる値を用いた.計算は9月1日か らの15日分について行った.

結果及び考察

Fig. 1 および Fig. 2 は,作物群落上にお ける日射量の日変化を正弦カーブで近似し た場合の,計算による土壌面蒸発量の経時 変化である(実際のシミュレーションにお いては,群落上の実測値を用いている). Fig. 1 は中央作物列の真下,Fig. 2 は群落の 側面(東側,西側)近傍の計算結果であり, 図中の凡例に示された数値(y)は,群落中 心からの東西方向への距離を表している (西側が正).このように,矩形チューブモ デルの導入によって土壌面日射量の空間変 動が計算可能となった.

葉群の熱収支から決定される葉面温度に 関して,計算値は実測値と良く一致した. また,土壌面日射量の空間変動が再現され たため,土壌面の熱収支から求まる地表面

Fig. 1 土壌面日射量の時間変化(中央列) Time course of solar radiation on soil surface under the center crop row.

Fig. 2 土壌面日射量の時間変化(群落側面近傍) Time course of solar radiation on soil surface under the side crop rows.

温度に関しても,計算値は場所による変化 を表現できた.蒸発散量に関しても,妥当 な算定結果が得られた.

おわりに

本研究の結果,矩形チューブモデルによ る日射環境(作物遮断量,土壌面到達量) の推定結果を,作物体(Big leaf)および地 表面の熱収支計算に用いることにより,蒸 発散量,とくに土壌面蒸発量の空間不均一 を高い精度で再現可能なことが示された.