ひも状接触材を使用した生物接触酸化法「バイオクリーン」にかかる浄化実験

四万十川水質浄化実験プロジェクトにおける実証実験から

和田一範*, 本間公也**, 大野 剛**, 大木裕司***

1 はじめに
「日本最後の清流」と称される全国的に名高い四万十川において、水質や景観などの現状に対して警鐘が鳴り始めた。本実験は、「四万十川らしさ」を保全していくための水質保全技術の開発の一端として行ったものである。また住民が川に接触する機会が増し啓蒙活動の模範となるべく、さらには維持管理が易しくコストにも配慮された浄化施設として平成○年設置された。

2 設置地域概要
この水質浄化システムは、四万十川の最上流である高知県四万十市大野見村に設置された。この地域の対象となる排水処理施設には、戸の民家、工場・事業所等が立地している（戸当たり1人家庭とする定住人口は約○○○人となる）。また上流部は山地、水田があり、これらからの自然水、農業用水が、生活排水の混入している水路から直接四万十川に流入している。

3 施設概要
施設概要を以下に示す。構造躯体の主な部材は、流域の森林保全を図るために地元産出の材を使用した。

設計時の汚染源、水質と目標水質
流量 1,000ℓ/secの生活排水
BOD 7.7(mg/l) 2.0(mg/l)
SS 10.5(mg/l) 3.0(mg/l)

施設諸元
幅 ○○○、延長 ○○○、水深 ○○○、容積 ○○○の間伐材製水路

浄化方式
ひも状接触材を使用した生物接触酸化法

充填した接触材
材質 ピニリデン
表面積 ○○○○㎡ ○○○㎡
空隙率 ○○○
充填量 ○○○○ton

曝気風量
曝気風量 ○○○㎥/minのブロワー1台

写真 ヒも状接触材

* 国土交通省国土技術政策総合研究所 National Institute for Land and Infrastructure Management
** 共和コンクリート工業株式会社 Kyowa Concrete Co.Ltd.
*** 株式会社きら和ぎ Kiranagi Co.Ltd.

キーワード：水質浄化、ひも状接触材、自然エネルギー
4. 水質浄化結果

施設設置から約3年にわたりおこなってきた浄化結果は、下記表及びグラフの通りである。全体的に対象水質の濃度が設計時より低く、水温もそれぞれ高い地域ではないが、設定した目標濃度は達成され、また特殊な技術も必要なく継続的に維持管理可能である。

図1 施設概要図

表1 水質測定結果

<table>
<thead>
<tr>
<th>項目</th>
<th>水温</th>
<th>①</th>
<th>②</th>
<th>③</th>
<th>④</th>
<th>⑤</th>
<th>⑥</th>
<th>⑦</th>
<th>⑧</th>
<th>⑨</th>
<th>⑩</th>
<th>⑪</th>
<th>⑫</th>
<th>大腸菌群数</th>
</tr>
</thead>
<tbody>
<tr>
<td>流入水</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
<td>(11)</td>
<td>(12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>浄化水</td>
<td>(13)</td>
<td>(14)</td>
<td>(15)</td>
<td>(16)</td>
<td>(17)</td>
<td>(18)</td>
<td>(19)</td>
<td>(20)</td>
<td>(21)</td>
<td>(22)</td>
<td>(23)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. まとめ

今回の実験結果より、この浄化工法は小規模な浄化施設でありながら、地域軽元品出の間伐材を使用することにより、物質循環を乱すことなく「四万十川らしさ」を保ちつつ、一般的に比較的困難とされるBOD濃度以下以下以下の超低濃度の水質においても目標水質を達成することが確認された。さらに界面活性剤の除去も確認された。また、)>>は低減が確認されているが、脱窒反応は見られていなかった。窒素全体としての浄化は進んでいない。現在は別な地域ではありますが維持管理費のかからない高効率な窒素とりんの除去、及びクロロフィルの除去・削減方法を実験検討中であり概略を以下に示す。

表2 水質測定結果（○県調整池）

<table>
<thead>
<tr>
<th>項目</th>
<th>用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COD</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-N</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

写真1 人工浮島と風力循環システム