ナムグム流域における河川水温解析モデルの構築 Development of Stream Temperature Analysis Model in Nam Ngum Basin

吉田貢士、丹治肇、宗村広昭、戸田修、増本隆夫 Koshi YOSHIDA, Hajime TANJI, Hiroaki SOMURA, Osamu TODA, Takao MASUMOTO

1.はじめに

ラオスでは電力輸出の推進のため、メコ ン河支流における多数の発電用ダムの建設 を計画しており、下流環境への影響が懸念 されている。本研究では DO、BOD といっ た生物環境水質項目に強く影響する河川水 温に着目し、ダム建設による下流への影響 を評価できる水温解析モデルを構築した。

2. 対象流域

本研究で対象とするナムグム流域は河川 長 420km、集水面積 16,400km²を有してお り、中流域にナムグムダムが存在する (Fig.1)。ナムグンダムの直下流において、 支流のナムリック川と合流しメコン川へと 流入する。Hori (2000)によれば、ダムの 集水面積は 8,280 km²、ダム提高 75m、提長 468m、平均使用水量 300m³/s で 15 万 KW の設備容量をもつ。またダム湖内の水温は 表層部から深層部にかけて 30 ~ 18 の 鉛直分布をもち、発電に使用される中層部 の水温は約 23 である。流量観測点はナム グン川上流 Naluang、下流 Pakkagnoung お よびナムリック川の Hinheup であり、解析 期間は 1997 年とした。

3. 流出解析モデル

流出解析には、流出機構(Fig.2)はシン プルではあるが物理過程に基づいており、 GIS データとのリンクが容易でるため大流 域における計算に有効である、TOPMODEL を採用した。ダムあり(ダム湖での貯留・放 流を考慮)、ダムなし時における流出計算結 果を Fig.3 に示す。パラメータはダムの影 響を受けない Naluang、Hinheup 観測所にお けるハイドログラフより同定した。

Fig.1 Nam Ngum Basin

Fig.2 Structure of TOPMODEL

[所属]農業工学研究所、National Institute for Rural Engineering [キーワード]流出解析、河川水温

4.水温解析

流出解析の結果を用いて以下の熱輸送方 程式により河川水温の解析を行った。

$$A\frac{\partial T}{\partial t} + \frac{\partial (QT)}{\partial x} = \frac{\partial}{\partial x} \left(AD_L \frac{\partial T}{\partial x} \right) + \frac{WS}{\rho C_p}$$
(1)

ここで、A:断面、T:水温、Q:流量、DL 熱拡散係数、W:水面幅、S:周辺環境との 熱交換量、Cp:比熱である。

長・短波放射や河床摩擦などを含むSを同 定する十分なデータが得られなかったため、 本研究では USGS で開発された SSTEMP によりSの値を推定した。

水温変化の時系列を Fig.4 に示す。ダム のない自然状態では河川水温は水量が少な く水深の浅い乾季に最大となる。一方、ダ ムあり時には、水量が少なくダム放流水の 影響を受けやすい乾季に最小となり、乾季 における水温差は大きい。雨期では流量が 大きいためダム放流水の影響が小さいため 水温差は小さい。

Fig.5 にダムのある・なしにおける水温差の空間分布を示す。乾季の4月では広範囲において河川水温に対する強い影響が見られた。

Fig.4 Stream Temperature Change (1997)

5.おわりに

本研究では流出解析・水温解析モデルを 構築し、ダム建設が河川水温に与える時間 的、空間的影響をシミュレートした結果、 特に乾季における大きな影響が示唆された。 現在フィールド観測を実施しており、今後 はモデルの検証・より詳細な分析が可能と なると考えられる。新規ダム建設において は許容水温内での開発を、また既存ダムに おいては放流量の適切なコントロールによ る水温変化の緩和対策などが今後必要にな ると思われる。

Fig.5 Spatial Distribution of Stream Temperature Affected Area (Monthly mean difference between with-dam and without-dam case)