熱帯モンスーンアジアにおける放射環境と蒸発散

Radiation Environment and Evapotranspiration in Tropical Monsoon Asia

辻本久美子*・増本隆夫**・三野徹***

TSUJIMOTO Kumiko, MASUMOTO Takao, and MITSUNO Toru

1. はじめに 蒸発散量は直接測定が困難であることから、ペンマン法などの経験式によっ て推定されることが多いが、これらは、地域や季節、水分状態に応じて較正する必要があ る、熱帯モンスーンアジアは、明瞭な雨季と乾季を有し、湿潤な雨季を利用して水田農業 が営まれるなど,環境の季節変化が大きいが,この地域での現地観測に基づいた蒸発散の 研究例は未だ少ない.そこで,カンボジアの水田主体のトンレサップ湖周辺域において気 象観測を行い,特に放射環境に着目してこの地域の蒸発散量について検討した.

2. 現地観測の概要 観測は,カンボジアのト ンレサップ湖周辺域に位置する Kandal Stung (以下 KS とする)および Chong Khneas(CK)に おいて、2003年6月より、時間単位で、Table1 に示す項目について行っている.熱帯モンス -ン気候帯に位置するトンレサップ湖は,雨 季にはメコン河から河川水が流入して湖面積 が増大する一方,乾季には湖水がメコンデル タに向かって流出し,湖が縮小する.KSは,

トンレサップ湖南東部に位置する灌漑水田地帯であり, Table2 に示 す農事暦で一期作が行われている.CK は年間を通して湖面上に位 置し 5-6 月頃に最低水深(約 1m),10 月初めに最高水深(7~8m)をとる.

3. 水田蒸発散量に影響を及ぼす要因 データ収集 状況の良好な KS について考察した.

蒸発散量推定の基準としてしばしば用いられ るペンマン蒸発散位 ETpen は,熱エネルギー供給 量を表す第1項 ET_{pen1}(純放射量の関数)と,大気の 水蒸気需要を表す第 2 項 ET_{pen2}(飽差の関数)の和 として求められる.KS についてそれぞれ求める と(Fig.1), 飽差が小さい雨季には ETpen1 が卓越し, 乾季には飽差の増加とともに ETpen2 が増加してい ることが確認される.すなわち,ETpenを規定する 主な気象因子は、雨季には純放射量、乾季には純 放射量と飽差であることがわかる.

E 40 60 (Pa) 3.3 10 ê 4.0 2004 Fig.1 ペンマン蒸発散位(ETpen)と各項の計

 (ET_{pen1}, ET_{pen2}) Potential evapotranspiration calculated by Penman equation (ET_{pen}) and its two components (ET_{pen1}, ET_{pen2})

次に傾度法によって, KS における実蒸発散量 ET。を求めた結果を Fig.2 に示す. 乾季に

*京都大学大学院地球環境学舎 Graduate School of Global Environmental Studies, Kyoto University, ⁶(独)農業工学研究所 National Institute for Rural Engineering,

『京都大学大学院農学研究科 Graduate School of Agriculture, Kyoto University Keywords: 蒸発散,熱帯モンスーンアジア,放射環境,現地観測

Table1 観測項目	Observation	items
-------------	-------------	-------

Kandal Stung (KS)		主	な欠測(全項目):2004/8/30-2004/10/5
観測項目	観測機器	備考	その他の主な欠測
風向·風速	034A-L30 (Campbell)	高度7mに設置	
風速	014A-L30 (Campbell)	高度0.8mに設置	
放射収支	CNR1 (Kipp&Zonen)	放射4成分を測定	
気温·相対湿度	CS500-L30 (Campbell)	高度7mと0.8mに設置	
大気圧	CS105 (Campbell)		
降雨量	TE525MM-L25 (Campbell)		
熱流板	HFT3 (Campbell)	2004/11/22に設置	
			高度基準面:観測タワー設置地表面
Chong Khneas (CK)			ヒた夕測(今百日)・2004/12/3-2004/1/9
			こる人間(王坂日).2004/12/3-2004/173
観測項目	製品名	備考	その他の主な欠測
観測項目 風向·風速	製品名 034A-L30 (Campbell)		その他の主な欠測
観測項目 風向・風速 風速	製品名 034A-L30 (Campbell) 014A-L30 (Campbell)	 備考 高度4mに設置 高度-1mに設置	その他の主な欠測 2003/11/13-2004/11/23
<u>観測項目</u> 風向·風速 風速 放射収支	製品名 034A-L30 (Campbell) 014A-L30 (Campbell) CNR1 (Kipp&Zonen)	 高度4mに設置 高度-1mに設置 放射4成分を測定	2003/11/13-2004/11/23
観測項目 風向·風速 風速 放射収支 気温·相対湿度	製品名 034A-L30 (Campbell) 014A-L30 (Campbell) CNR1 (Kipp&Zonen) CS500-L30 (Campbell)	 高度4mに設置 高度1mに設置 放射4成分を測定 高度4mと1mに設置	その他の主な欠測 2003/11/13-2004/11/23 2003/11/13-2004/5/19 (高度-1m)
<u>観測項目</u> 風向 · 風速 風速 放射収支 気温 · 相対湿度 大気圧	製品名 034A-L30 (Campbell) 014A-L30 (Campbell) CNR1 (Kipp&Zonen) CS500-L30 (Campbell) CS105 (Campbell)	 高度4mに設置 高度4mに設置 放射4成分を測定 高度4mと1mに設置	その他の主な欠測 2003/11/13-2004/11/23 2003/11/13-2004/5/19 (高度-1m)
<u>観測項目</u> 風向 ·風速 風速 放射収支 気温 ·相対湿度 大気圧 降雨量	製品名 034A-L30 (Campbell) 014A-L30 (Campbell) CNR1 (Kipp&Zonen) CS500-L30 (Campbell) CS105 (Campbell) TE525MM-L25 (Campbell)	<u>備考</u> 高度4mに設置 高度-1mに設置 放射4成分を測定 高度4mと-1mに設置	その他の主な欠測 2003/11/13-2004/11/23 2003/11/13-2004/5/19 (高度-1m)
<u>観測項目</u> 風向·風速 風速 放射収支 気温・相対湿度 大気圧 降雨量 水温(非接触表面)	製品名 034A-L30 (Campbell) 014A-L30 (Campbell) CNR1 (Kipp&Zonen) CS500-L30 (Campbell) CS105 (Campbell) TE525MM-L25 (Campbell) BS30 (OPTEX)	<u>備考</u> 高度4mに設置 高度5-1mに設置 放射4成分を測定 高度4mと-1mに設置	<u>その他の主な反測</u> 2003/11/13-2004/11/23 2003/11/13-2004/5/19 (高度-1m)
<u>観測項目</u> 風向·風速 風速 放射収支 気温·相対湿度 大気圧 降雨量 水温(非接触表面) 水温	教品名 034A-L30 (Campbell) 014A-L30 (Campbell) CNR1 (Kipp&Zonen) CS105 (Campbell) TE525MM-L25 (Campbell) BS30 (OPTEX) 107-L70 (Campbell)	<u>備考</u> 高度4mに設置 高度1mに設置 放射4成分を測定 高度4mと1mに設置 高度-7mと-11mに設置	<u>その他の主な欠測</u> 2003/11/13-2004/5/19 (高度-1m)

Table2 KS の農事暦 Agricultural Calendar (KS)

苗つくり	6月後半~7月
田植え	7月後半~8月
早稲収穫	11月後半
晩成稲収穫	12月後半~1月

は比湿の鉛直勾配が形成されず,蒸発散がほとんど 生じていないことがわかる.これは,乾季には土壌 の乾燥が進み,蒸発に使われる十分な水分が無いこ とと,イネの収穫により蒸散量が減少することによ ると考えられる.この間はボーエン比が高く,熱 エネルギーの多くが顕熱として使われている.つま り,乾季の非湛水/非灌漑地では,水田土壌水分が大 気湿度とともに減少するため,飽差の増加によって *ET*_{pen2}は増加するものの,土壌水分減少を介して*ET*_a は減少する.

4. 対象地の放射環境 ET_{pen} を規定するもう 1 つの 要因である純放射量は,一般地上気象観測では測定 されていないことが多く,しばしば大気圏外日射量 Q_a や日射量 S_d などから推定される.そこで,観測さ れた放射 4 成分(全天日射量 S_d ,反射量 S_u ,下向き長 波放射量 L_d ,上向き長波放射量 L_u)から,純放射量 R_n および S_d に対する R_n の比を求め, Q_a とともに示 した(Fig.3). Q_a の大きい時期が,雲により日射が遮 られる雨季にほぼ対応するため, S_d の季節変化は Q_a に対して小さくなる.一方 R_n について見ると,12-2 月にかけて少なく 5-9 月にかけて多いこと,CKの方 が KS よりも R_n が多く,その変動が小さいことが分 かる.これは, R_n/S_d の季節変化と対応している.

次に,*R_n/S_d*を規定する*L_d*,*L_u*,およびアルベドにつ いて見ると(**Fig.4**),次のことがわかる.(1)*L_d*は11-3 月にかけて少なく,これは乾季で雲が無いことによ ると考えられる.(2)*L_u*はCKおよび湛水期のKSで 小さく,これは,水の比熱が大きいために表面温度 の上昇が抑えられているためであると考えられる. 一方,非湛水期のKSでは*L_u*が大きく増加しており, 地温が上昇していると考えられる.(3)CKのアルベ ドは明瞭な年変化を示している.この原因として, 湖水深変化に伴う湖水濁度や浸水林浸水率の変化が 考えられるが,今後さらに検討が必要である.

5. **おわりに** 明瞭な雨季・乾季をもつ熱帯モンス

Fig.2 上段: *ET*_a(左軸)およびボーエン比 (右軸), 中段: 2 高度間(低高度 - 高高度)の風速(左軸)およ び比湿(右軸)の差,下段: *ET*_a/*ET*_{pen}(左軸)と飽差(右 軸)の関係

top: ET_a (left axis) and (right axis), center: difference (lower-upper) in wind speed (left axis) and specific humidity (right axis) bottom: ET_a/ET_{pen} (left axis) and vapor deficit (right axis)

 L_{u} , L_{u} and albedo (KS, CK) and water depth at CK (dot line for estimated values)

ーンアジアでは,太陽周期や雲の存在,大気の飽差といった気象環境の季節変化に加えて, 地表面(水面)状態が大きく季節変化する.とりわけ,水田主体のトンレサップ湖周辺域で は,この傾向が顕著である.地表面(水面)の季節変化は,土壌水分や放射環境の季節変化 を介して蒸発散に影響を与えていることから,この地域の蒸発散量を推定する上では,気 象要素のみならず,地表面(水面)状態の季節変化を十分に考慮する必要がある.