ET sub-model (root zone model) as shown in Fig.2. The basic structure of this model having two layers and distributed parameters includes infiltration, evapotranspiration, sub-surface saturated lateral flow, overland flow and channel flow. A two-stored storage tank as Fig.2 of root zone model was considered as the upper layer. A grid cell was considered as one storage tank. Rainfall was applied to the storage tank. Green-Ampt method was applied to compute infiltration rate. Rainfall in excess of surface detention was routed as overland flow by using kinematic wave equation. The amount of stored water in the tank at the upper layer was taken by evapotranspiration using Sakai's equation. Some stored water at the upper layer transferred to lower layer where it was available as saturated lateral flow. Overland flow and saturated lateral flow were routed through each cell to the downstream cell until they reached the

be doubled for all schemes. Hence, an assessment of spatial distribution of water availability in the watershed is necessary. Irrigation practices will strongly affect the river flow, and such influences must be assessed too when the irrigation schemes are rehabilitated. For these purposes, a distributed hydrologic model plays

a significant role in these issues. Meanwhile, river flow runoff is

A basic structure of a distributed system hydrological model was developed by combining a modification of the distributed hydrological model (Mohammed's model) and modification of Sakai's

The model was performed for each cell for each time step (1 hour).

yield of agricultural production. If the irrigation planning is conducted properly, irrigation areas will increase and the cropping intensity will

largely influenced by actual evapotranspiration (ET) in the watershed having a distinct dry season. An accurate estimation of actual ET is crucially important for proper watershed modeling. Therefore, the objective of this research was set as establishing a distributed system hydrologic model by combining a distributed hydrologic model and an ET sub-model.

1. Introduction

2. Model development

Prek Thnot River is one of major tributaries of Mekong River in Cambodia, whose watershed has high potential in water resources development to increase agricultural production (Fig.1). This watershed has an area of 5,000 km². Most of irrigation schemes were constructed with improper planning that resulted in low

Distributed Hydrological Modeling of Prek Thnot River Watershed, Cambodia, for Irrigation Planning カンボジア・プレックタノート 川流域における灌漑計画のための分布型水文モデリング

OSAM Chhom Sangha*, Akira GOTO ** and Masakazu MIZUTANI **

Fig.1 Location map of Study Area

On · nercolation cm/h

Fig. 2 Root zone model for ET sub-model

*United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, **Utsunomiya Univ. Keywords: Distributed hydrological model, Irrigation planning, Cambodia

cell containing the channel element, where they were routed as channel flow by Muskingum-Cunge method.

3. Model application

The model was applied to the Prek Thnot River watershed. Three-year periods (2001-2003) of data were employed. The year 2001 was used for model calibration for this time. Daily observed discharge at Peam Kley station was used to compare with the calibrated one. The simulated area was $3,650 \text{ km}^2$. There were four soil types such as sandy loam, loam, clay loam and clay. There were six major land uses, which were reclassified into two vegetative types such as forest and paddy field.

4. Results and discussion

Calibrated parameter values are shown in Tabl of simulated discharge is shown in Fig. 3. It was calculated hydrograph was not sufficiently compared with the observed one. The discharge p the dry season (calculated hydrograph) when try

Table 1: Calibrated parameter values

e 1. The result	Parameter	Symbols	Layer	Unit	Forest condition				Paddy field co		
					Sandy learn	Lean	clzy loam	Clay	Sandy learn	Loan	Ē
	Depth	d	Upper	nh	0.50	0.50	0.50	0.50	0.50	0.50	
found that the	Saturated hydraulic conductivity	k,	Upper	cnh	0.18	0.14	0.1	0.1	0.18	0.14	l
iouna mat me	Subsurface lateral saturated hydraulic conductivity	k,	Lower	nh	0.80	0.80	0.80	0.80	0.80	0.80	
good when	Wetting front capillary pressure head	h	Upper	cm	11.01	8.89	20.88	31.36	11.01	8.89	
	Porosity	р	Low.		0.439	0.416	0.409	0.418	0.439	0.406	ī
eaks appear in	Saturated soil moisture	8,	Upper		0.404	0394	0.39	0.4	0.404	0.394	
	Parameter for ET	A	Upper		14457.485	-1267.28	-1056.79	-145.145	-363.445	-4.31900	L
ing to increase	Parameter for ET	В	Upper		0.1031	0.0778	0.0778	0.1007	0.1982	20.4242	
	Conductivity shape	1	Upper		5.063	14.56	9,21	12.38	5.063	14.56	ī
	Manning coefficient	1	Upper		0.15	0.15	0.15	0.15	0.045	0.045	1

discharge in rainy season. Fig. 4 shows the effect of change in infiltration rate through increasing the values of saturated hydraulic conductivities. It was found that when the discharge peaks in dry season decrease, the

discharge peaks in rainy season also decrease. Because the ratio of runoff discharges in dry season and rainy season is quite different, it suggests that hydrological models developed for watersheds in the humid region may not be able to cope with this phenomenon. Therefore, this model structure needs to be

modified to improve the model performance.

5. Modification of the model

Fig.3: Calculated and observed hydrographs

Fig. 4: Effect of change in infiltration rate

difference in infiltration property between the rainy season and dry season; to increase the peak in the rainy season and to improve the calibrated parameter values of Ks and Kl to be realistic ones. Therefore, to increase the peak calculated hydrograph in rainy season, the maximum storage water level

The purposes of this modification were to cope with the

(Bmax) at the lower layer should be set up. When the storage level at lower layer B1 is greater than the maximum value Bmax, the surplus water in the lower layer goes up to the upper layer.

6. Conclusions

According to this research, we can make conclusions as the following: a basic structure of the distributed hydrological model was established; root zone model could perform properly; necessity of modification to cope with the difference in infiltration property between the rainy season and the dry season was clarified and modifications necessary to improve the model performance were proposed.

References

Kazuhito SAKAI, Akira GOTO and Riota NAKAMURA (1994). Modeling of evapotranspiration for analysis of hydrologic cycle in a 1. watershed having dry season (in Japanese) Trans. of JSIDRE No.174, 73-81

Kazuhito SAKAI, Akira GOTO and Riota NAKAMURA (1997). Decision of parameter value of ET sub-model according to condition of 2 soil texture and landuse of the watershed (in Japanese). Trans. of JSIDRE No.187, 133-143.

Mohammed Abdullahi, Hiroyuki MATSUI, Masakazu MIZUTANI and Akira GOTO (2002). Distributed runoff model of mountainous 3. catchment in Kenya. Trans. of JSIDRE No.221, 49-55.