傾斜地における不透水層破砕が排水効果に及ぼす影響

Effect of impermeable layer destruction on water drainage in a hill slope field

新田大輔 井本博美 溝口勝 宮崎毅

NITTA daisuke IMOTO Hiromi MIZOGUCHI Masaru MIYAZAKI Tsuyoshi

1. はじめに

傾斜畑では降雨時に土壌侵食が発生しやす い.その原因の一つとして,農業機械の走行に よって形成される耕盤が不透水層となり,降雨 の地下浸透を妨げることが考えられる.そのた め実際の傾斜畑では土壌浸食を軽減する目的 でサブソイラー等による耕盤破砕が行われて いる.昨年,銭谷ら(2004)は現地のトレーサー 試験により傾斜畑には難透水層が存在するこ とを確認し,シミュレーションにより難透水層 を破壊することで土壌浸食を減らせる可能性 を示唆した.しかし,破砕形状と土壌浸食の関 係については未だ十分に検討されていない.そ こで,本研究では不透水層の破砕形状の違いと 地中排水の効果の関係を室内モデル実験によ り調べた.

2. 実験方法

(1)装置

Fig.1 に実験装置の概要を示す.実験装置は, 内寸60×37×21cmで,傾斜角度は8度である. 装置内の底面から10cmの位置に不透水層とし て厚さ1cmの塩化ビニル板を設置した.この板

Fig.1 Experimental Setup

の上層と下層からの排水量を下端の集水升で 測定する.降雨による土粒子の飛散を防止する ために,試料表面にガーゼを敷いた後,土壌表 面より54cmの降雨装置から,50~60mm/hの一 定の降雨強度で散水する.

(2) 試料

豊浦砂と黒ぼく土の2種類の試料を用いた. 豊浦砂は初期含水比を2%に調整し,乾燥密度 1.46Mg/m³で充填した.黒ぼく土は2mmのふる いを通過したものを初期含水比44%に調整し, 0.77Mg/m³で充填した.試料充填時の条件を Table1に示す.

(3) 不透水層の破砕形状(Fig.2)

不透水層の破砕形状を破砕なし,横スリット, 縦スリット,円形破砕の4種類とした.破砕部 分(図の黒い部分)の面積は集水面積の5%と

Fig.2 Destruction patterns for impermeable layer

Table1 Experimental conditions				
豊浦砂	なし	横スリッ	縦スリット	円形破砕
降雨強度(mm/h)	56.2/ -	55.5/58.9	54.6/54.4	58.0/47.0
流出開始時刻(s)	734/ -	3518/3592	4578/3949	4837/3718
初期含水比(%)	2/ -	2/2	4/4	2/2
乾燥密度(Mg/m ³)	-	1.42/1.48	1.41/1.51	1.43/1.50
定常時の流出速度比				
(下層/上層)	-	0.94	2.26	3.94
甲ぼくナ	+>1	井井 フ ー ー ・・		
氷る / ト	なし	惧人リツ	縦人リツト	<u>円</u> 形破砕
<u>ニュヽエ</u> 降雨強度(mm/h)	なし 50.4/47.3	<u> </u>	<u>縦スリット</u> 54.1/53.9	円形破砕 52.1/51.4
<u>蒸は、上</u> 降雨強度(mm/h) 流出開始時刻(s)	50.4/47.3 2072/ -	<u> (東スワッ 52.6/ -</u> 1972/6144	縦スリット 54.1/53.9 2232/23158	<u>円形破砕</u> 52.1/51.4 1845/5657
<u>降雨強度(mm/h)</u> 流出開始時刻(s) 初期含水比(%)	50.4/47.3 2072/ - 45/ -	<u>していたいです。 1972/6144</u> 47/38	<u>縦スリット</u> 54.1/53.9 2232/23158 37/44	円形破碎 52.1/51.4 1845/5657 49/49
<u>降雨強度(mm/h)</u> <u>流出開始時刻(s)</u> 初期含水比(%) 乾燥密度(Mg/m ³)	50.4/47.3 2072/ - 45/ - 0.73/ -	<u>懐スワッ</u> 52.6/ - 1972/6144 47/38 0.75/0.82	<u>縦スリット</u> 54.1/53.9 2232/23158 37/44 0.79/0.82	円形破砕 52.1/51.4 1845/5657 49/49 0.71/0.79
<u>際国 3 と</u> 降雨強度(mm/h) 流出開始時刻(s) 初期含水比(%) 乾燥密度(Mg/m ³) 定常時の流出速度比	50.4/47.3 2072/ - 45/ - 0.73/ -	<u>懐スりッ 52.6/ - 1972/6144 47/38</u> 0.75/0.82	縦スリット 54.1/53.9 2232/23158 37/44 0.79/0.82	円形破碎 52.1/51.4 1845/5657 49/49 0.71/0.79
<u> 下 下 下 二 二 二 二 二 二 二 二 二 二 二 二 二 </u>	50.4/47.3 2072/ - 45/ - 0.73/ -	<u>横スワッ 52.6/ - 1972/6144 47/38 0.75/0.82</u> 0.50	縦スワット 54.1/53.9 2232/23158 37/44 0.79/0.82 0.0056	円形破碎 52.1/51.4 1845/5657 49/49 0.71/0.79 0.17

その他の項目は(上層/下層)の値

*東京大学農学部 Faculty of Agriculture, The University of Tokyo

^{**}東京大学大学院農学生命科学研究科 Graduate School of Agricultural and Life Science, The Univ. of Tokyo キーワード:土壌侵食,不透水層,排水,耕盤層破砕

した.横スリットは斜面方向と垂直に,縦スリ ットは斜面方向に沿って板の中央に溝をつけ たもの,円形破砕は板に半径 1.88cm の穴を均 等に開けたものである。

3. 結果と考察

(1) 豊浦砂の排水量(Fig.3-a)

時間あたりの排水量を下端の断面積(37× 10cm)で除したフラックス(cm/s)を定義し、流 出速度とした。縦スリット,円形破砕で下層か らの流出割合が多く,縦スリットでは下層の流 出速度が上層の2倍程度,円形破砕では4倍程 度であった.また,流出開始時刻も上層より下 層からの方が早かった.それに対して,横スリ ットでは上層と下層からの流出速度はほぼ等 しかった.これらの結果は,砂の透水係数が大 きく降雨がすぐに下層に浸透したためと考え られる.

(2) 黒ぼく土の排水量(Fig.3-b)

すべての条件で上層の流出速度が大きく,流 出開始時刻も上層の方が早かった.定常状態に おける上層と下層の流出速度比は,横スリット (0.50),円形破砕(0.17),縦スリット(0.0056) の順で,円形破砕,縦スリットでは下層からの 流出量が小さかった.これは,黒ぼく土の透水 係数が小さいため降雨が下層に浸透できず,表 面流去水として上層集水升に流れ込んだため と考えられる

(3) 破砕形状の違いによる排水効果の評価 (Fig.4)

下層への排水割合が大きい方が,土壌侵食が 軽減されると考えられる.そこで,各実験にお いて,上層・下層からの流出速度が定常に達し

た時点での全排水量に対する下層からの排水 量の比を計算し,排水効果を比較した.結果を Fig.4 に示す.豊浦砂では排水効果が,円形破 砕(0.82),縦スリット(0.72),横スリット (0.48)の順であった.それに対して,黒ぼく土 では豊浦砂に比べると全体的に排水効果は小 さく,横スリット(0.25),円形破砕(0.11),縦 スリット(0)の順で,縦スリットにはほとんど 排水効果がなかった.我が国の傾斜畑の土壌が 火山灰土であることを考えると、この結果は、 土壌侵食軽減のためには傾斜方向と垂直に耕 盤を破砕した方が効果があることを示唆する ものである.

Fig.4 Effect of drainage

4. おわりに

本研究では,土壌侵食を軽減する農地管理技 術を開発することを目的に,傾斜地における不 透水層の破砕形状と排水効果の関係について 検討した.その結果,黒ぼく土では,傾斜方向 と垂直に耕盤を破砕するのが最も排水効果が あることがわかった.

参考文献 1) 銭谷ら: 傾斜畑地の難透水性層が 土壌水分移動に与える影響,農業土木学会講演 要旨集, pp.296-297, 2004

Fig.3 Discharge rates from up/down layer for Toyoura sand (a) and Kuroboku (b).