原位置測定データに基づく中国式温室圃場の土壌物理特性の推定 - 黄土高原における適用例 -

Estimation of soil physical properties in a Chinese style greenhouse field based on in-site measured data

- A case in Loess Plateau -

猪迫耕二*,白艶梅**,井上光弘***,山田智*,梁 銀麗****,田熊勝利*

Koji Inosako, Yanmei Bai, Mitsuhiro Inoue, Satoshi Yamada, Yinli Liang and Katsutoshi Takuma

1.はじめに

中国黄土高原では,高い収益が期待できる施設農業が盛んとなっている.しかし,この 地域に適した温室内の水管理法は未だ確立されていない.適正な圃場水管理法を確立する ためには,原位置における土壌物理特性を知る必要がある.そこで,本研究では,中国陝 西省延安市郊外(N36°39'29.1",E109°26'25.3")の中国式温室内の圃場において測定した 土壌水分データをもとに,逆解析法による温室内土壌の土壌水分保持曲線(SWRC)なら びに不飽和透水係数(K)の非破壊推定を試みた.

2.研究対象温室と測定方法

調査対象とした中国式温室(Fig.1)は,南面のみがビニルフィルムで被覆され,他の面 は土壁で囲まれた構造となっている.極めてシンプルな構造であるが,無加温での冬季栽 培を可能にするほど保温性は高く,中国北部に広く普及している.

温室内圃場の土壌水分測定にはプロファイル水分計(PR1/4, Delta-T 社製)を用いた. 温室のほぼ中央に位置する区画に PR1/4 を設置し,深さ0~10,10~20,20~30,30~40cm の土層の平均体積含水率を1時間インターバルで測定している.測定は2003年9月から開 始し,現在も継続中である.ここでは,作付け前(2004年9月16日)の裸地状態で内部 排水実験を行い,SWRCとKを推定するための逆解析データを得た.このときの PR1/4の 測定インターバルは10分であった.

3. 逆解析法

SWRC, K にはそれぞれ van Genuchten の式およ び van Genuchten Mualem の式を用いた.したが って,同定するパラメータは,飽和体積含水率(θ_s), 残留体積含水率(θ_r),フッティングパラメータ(α , n),飽和透水係数(K_s)の5つである.なお,ここ では4層すべてで土壌の物理特性が異なるものと 仮定して各層のパラメータを同定した.逆解析に は Hydrus-2Dを用いた.計算領域は直径 40cm,深

Fig.1 Chinese style greenhouse

^{*} 鳥取大学農学部, Faculty of Agriculture, Tottori University, ** 鳥取大学大学院農学研究科, Graduate School of Agriculture, Tottori University, ***鳥取大学乾燥地研究センター Arid Land Research Center, Tottori University, ****中国科学院水土保持研究所 Institute of Soil and Water Conservation, The Chinese Academy of Sciences and Ministry of Water Resources キーワード 保 水性,水分移動,逆解析

さ40cmの円筒状の土壌とした.上部境界条件には内部排水実験の灌水フラックスを与え, 灌水終了後は地表面をビニルシートで覆ったため蒸発はないものとした.下部境界条件に は計算領域の含水量変化から算定した変動フラックスを与えた.逆解析データは 10cm 厚 さの土層の平均体積含水率であるが,各層の中心深さの体積含水率がその値に相当すると 仮定し,深さ 5,15,25,35cm で推定値と実測値を比較した.推定結果の検証には 2003 年 10月 26日の裸地状態下における体積含水率の実測データを用いた.

4.結果と考察

Table1 にパラメータの同定結果を示した. 各層の飽和透水係数はいずれも 0.252cm/min であった.これは,別途プレッシャーインフィルトロメーター法で 測定した現場飽和透水係数 0.264cm/min とよく一致している.

Fig.2 はこのパラメータを用いた SWRCと*K*-θ曲線である. グラフ化すると第1層 目と2層目の SWRC は非常に類似していること がわかる.また,第4層目のグラフは他の層と大 きく異なっていた.

Fig.3 は逆解析時の計算結果とパラメータ検証 時の計算結果である.全体的に推定値は実測値に よく適合しており,パラメータの同定はほぼ妥当 なものといえる.しかし,今回の結果だけでこれ らのパラメータが現場の状況を再現しているとは 言えず,初期設定,土層分割数,ヒステリシスな ども考慮してさらなる検討が必要と考える.

5.おわりに

本研究では,現地で測定された体積含水 率を目的関数として逆解析を行い,これま でデータのなかった黄土高原の温室内圃場 の原位置土壌物理特性の推定を行った.そ の結果,ほぼ妥当と思われるパラメータ群 を同定できた.現在,深さ40,60 cm でサ クションの連続測定を行っており,今後こ れらのデータを加えて,推定パラメータの 同定精度を上げる予定である.

なお,本研究の一部は日本学術振興会拠 点大学方式学術交流事業「中国内陸部の砂 漠化防止および開発利用に関する研究」の 補助を受けて行った.ここに記して謝意を 表す.

 Table1 Results of identification of parameters

土層	θs	θr	α	п	Ks
0-10	0.395	0.0318	0.0107	1.45	0.252
10-20	0.391	0.0583	0.0165	1.44	0.252
20-30	0.438	0.119	0.0220	1.63	0.252
30-40	0.535	0.0897	0.0227	1.46	0.252

Ks の単位は cm/min

Fig.2 Soil water retention curves and hydraulic conductivities

Fig.3 Changes of water content in soil layers