堰基礎地盤での浸透破壊の研究

Study of Seepage Failure in Foundation of Dam

小松宜紘 田中忠次 KOMATSU Takahiro TANAKA Tadatsugu

1.はじめに

堰の浸透破壊に対する安定性の評 価手法として、クリープ比を用いた 方法が有名である。しかし一般には あまり正確でないと認識されている。 別の方法としては、Terzaghi の方法 が有名である。変形しない矢板での 浸透破壊に対して、比較的正確な破 壊水頭差を求めることができる。し かし、実際には堰には適用されない。 矢板基礎地盤での浸透破壊に対し、 有効な解析手法であると検証された 弾塑性有限要素法を、本研究では堰 に対して適用した。また実験と解析 により浸透破壊のメカニズムの解明 を行い、古典的手法についての考察 を行った。

 2 実験パターンと解析パターン 表1に本研究で行った堰(壁体)の種類を示す。

- 3 実験
- 3.1 模型実験の概要

実験の概要について説明する。模型実験槽は高さ 50cm、幅 100cm、奥行き 20cm。側面はガラス製である。 地盤材料としては豊浦砂を使用。壁体材料は表 1 を参照。

3.2 実験観測

徐々に水頭差を与え、浸透破壊が 発生するまで地盤変位の観察、測定 を行った。

4 解析

本解析では、まず浸透解析を行い、 求められた浸透力を外力として弾塑 性有限要素解析を行った。浸透流解 析と弾塑性有限要素法はそれぞれが 独立な関係となっている。

弾塑性有限要素解析はひずみ硬

化・軟化、せん断帯幅、異方性を考慮した構成式を採用しており、非線形解法には implicit-explicit 型の動的緩和法とリターンマッピング法を結合させている。収束判定には荷重ノルム 0.001 を用いており、最大100,000回の繰り返し計算を行った。

	壁体幅	根入れ	壁体材料(実験)
矢 板	0.3cm	5 c m	アルミ
Dam 1	1 c m	5 c m	アクリル
Dam 2	2 c m	5 c m	アクリル
Dam 3	2 c m	6cm	アクリル
Dam 4	4 c m	5 c m	アクリル
Dam 5	8 c m	5 c m	アクリル
Dam 6	12cm	1 c m	アクリル
Dam 7	12cm	5 c m	解析のみ

表 1:実験、解析パターン Table1: Dam Types of This Study

5 結果

5.1 根入れ深さが同じ場合の比較

図 1 に根入れ深さが等しい場合の 堰幅(壁体幅)と破壊水頭差の関係を示 す。実験値、Terzaghiの方法(注 1)、 弾塑性有限要素法(FEM)、クリープ比 の方法(注 2)ともに、堰幅に対し破壊 水頭差が比例して大きくなった。た だし、実験値とクリープ比の方法の 結果には大きな数値的な隔たりがあ る。(注 1:過剰間隙水圧の算出には 有限要素法を利用。注 2:クリープ比 =7(細砂))

5.2 クリープ長が同じ場合の比較
図 2 にクリープ長(地盤と壁体の境界長)が同じ場合(14cm)の堰幅(壁体幅)と破壊水頭差の関係を示す。クリープ比を用いた方法では、堰幅や根入れ深さに関係なく破壊水頭差は一

東京大学大学院農学生命科学研究科 Graduate School of Agricultural and Life Science, University of Tokyo キーワード:堰、浸透破壊、弾塑性有限要素法 定となり、実験と異なる傾向を示した。弾塑性有限要素法では実験値に 近い傾向を示した。それ以上に Terzaghiの方法が実験値の傾向を表 現した。

5.3 内部構造の推定

図 3 に堰(壁体)周辺の最大せん断ひ ずみ分布を示す。右側が下流である。 壁体下流直近と約 3.5cm 水平に離れ たところで、鉛直方向にせん断帯が 発達していることがわかる。このせ ん断帯に囲まれた部分と、Terzaghi が提唱した土柱(図中の破線の四角)の 大きさ、形状とよく一致する。つま り有限要素法などを用い、詳細で正 確な浸透流解析が可能であれば、堰 の場合でも Terzaghi の方法で破壊水 頭差を求めることが可能と言える。

6 まとめ

本研究により、クリープ比を用い た方法は安定性の評価手法として正 確でないことが証明された。一方、 本研究で用いた弾塑性有限要素法で は、実験値に対して比較的正確な破 壊水頭差の算定が行えた。また、堰 に対しても Terzaghi の方法で破壊水 頭差の算定が行えるという結果とな った。 一般的に Terzaghi の方法は矢 板にしか適用されない。これは地盤 中の浸透流計算が困難なためであり、 複雑な条件では適用することが困難 であったためであろう。現在では有 限要素法により正確で詳細な計算を 容易に行うことができる。この方法 は、堰の浸透破壊に対する簡便的な 解析手法として、信頼できると考え られる。

わが国には大小、新旧、様々な堰 が多く利用されている。特に小河川 に点在する小規模な堰は大正~昭和 30年代に建設されたものが多く、老 朽化が進んでいる。改修する場合、 事業規模の面から考えれば、安全で ればならない。そのためには、正確 な安定性の評価と設計が求められる。 本研究の弾塑性有限要素法を用いる ことによって、この要求を満たすこ とができると考える。

図 2: 堰幅-破壊水頭差関係(同クリープ長) Fig2: Dam Width and Critical Head (Same Creep Length)

Fig3: Distribution Map of Max Shear Strain