高いpH調節下における電気炉酸化スラグによる連続的なリン除去

Sequent PhosphorusRemoval under High Ph Control ConditionbyUsingElectricArcFurnace Oxidizing Slag

近藤雅秋゛ KONDOMasaaki*1

1.はじめに 電気炉酸化スラグ(スラグ)を使 ってリン (P) の除去ができ, スラグのカルシウ ム成分が除去に寄与することが分かった¹).

予備的に試行した結果、初期リン濃度が 0.32mmol/L以下で高率除去できた. そして,この 高率に除去される濃度域では, リン除去成分であ るカルシウム(Ca)やpHが余った.そこで,除 去成分の剰余を利用することで,連続的な除去が 期待でき、スラグに向いたリン除去方法を検討す るに至った.ここで,スラグの浸漬液のpHは高 く、この高いpHを活かして低いリン濃度を除去 する方法として,凝集法があげられる.

本報告では,低リン濃度を除去する際の除去成 分の剰余に着目し,凝集法を想定して高pHの調 節下における連続的なリン除去を試みた.まず, リン除去実験でのpH調節を実現するために,あ らかじめ構築しておいたpH制御装置を従来の除 去装置に組み込んだ.次に,連続除去性を検討す るために,pH11条件下で長期的な除去実験を実 施した.その際,除去機構を確認するために,生 成物の分析も実施した.

2. リン除去実験

2.1 試料と装置 スラグ試料には,900 で3時間 加熱した粒状スラグを用いた.この加熱条件でリ ン除去成分を最大限に溶出できる.また,リン溶 液はリン酸2水素カリウム(KH2PO4)水溶液とした.に低下した.

実験装置として,循環通水式リン除去装置に pH制御装置を組み合わせ, pH調節下でのリン除 去を実現させた.

2.2 方法 スラグ試料5kgを除去装置に設置し, 水温20 に保ちつつリン溶液30Lを一定流量で通 水させた.溶液を貯留させる受水槽では,1mol/L 水酸化ナトリウム注入液を流水箇所に滴下するこ 実験では、一定時間経過したところで、所定の

追加仕様は,リン追加の時間間隔Iが24hで連続5

回,そしてI=1hで連続10回とした.予備実験結果 から, C₀(P)は0.08, 0.16, 0.32mmol/Lを設定した.

リン追加の時間間隔/は,24hおよび1hとした. 従来の単発的な24h実験を踏襲する形で, I=24hと した. そして, 24h実験の結果から*t*=1hで高率除 去されたため, I=1hも対象とし,除去の限界性を 検討した.追加時には、P濃度を測定してKH₂PO₄ の追加量を計算し,水量に留意して追加した.

3. 白色凝集物の分析 円筒内のスラグ間隙中に 白色凝集物を観察したので,実験終了後に収集し て粉末X線回折法で分析した.

4. 結果と考察

4.1 白色凝集物の分析結果 白色凝集物のXRD 分析の結果、白色凝集物のXRD回折波形ピーク と水酸アパタイトHApとの整合性が良好であるこ とから,白色凝集物はHApであると判断した. 4.2 除去実験の結果 Fig.1,2に除去実験におけ るPやCaの濃度変化を示す.それぞれのリンを追 加する時間間隔でのリン除去の連続性をまとめる

Fig.1(a)より, I=24hでのP濃度の特性をまとめ る.まず, C₀(P)=0.08~0.16mmol/Lでは全期間中 に, R₂₄が95%を超えていた.そして, C₀(P) =0.32mmol/Lでは,リン追加回数kが1~4回までの R₂₄が95%強であった.しかし, k=5回でR₂₄が90%

Fig.1(b)より, I=24hでのCa濃度の特性をまと める.本実験におけるリン除去は,主にHAp生成 によると考えられ,それぞれの初期P濃度を除去 するのに必要なCa濃度N(Ca)を図中に破線で示す。 まず, C₀(P)=0.08~0.16mmol/Lでは, Ca濃度はN (Ca)より大きく,溶存のCa濃度は充分に存在し た. C₀(P)=0.32mmol/Lでは, Ca濃度はk=4回まで とで,速やかに均質化させpH11一定に調節した.N(Ca)より大きかったが,k=5回になると,Ca濃 度がN(Ca)より小さくなった.このk=5回は,Ca初期P濃度 $C_0(P)$ に戻るように KH_2PO_4 を追加した.濃度がN(Ca)より小さくなった時点であるととも に,R24が低下し始めた時点でもあった.このよ

うに, $C_0(P)=0.08\sim0.16$ mmol/Lでは,Ca濃度が必要 濃度以上に存在した.しかし, $C_0(P)=0.32$ mmol/Lでは,Ca濃度の低下傾向がみられ,不足が見られ始めた.

Fig.2(a) より,I=1hでのP濃度の特性を整理する.まず, $C_0(P)=0.08$ mmol/Lでは, R_1 が全期間で95%強を示した.しかし, $C_0(P)=0.16$ mmol/Lでは, R_1 が95%から70%へと次第に低下していき,低下傾向が示された.そして, $C_0(P)=0.32$ mmol/Lでは,k=1回の R_1 だけが90%強を示したものの,その後k=1回以外の R_1 は10~20%を示し低率な除去であった.このため, $C_0(P)=0.32$ mmol/Lにおける連続除去は不良とみなした.

Fig.2(b)より、I=1hでのCa濃度の特性を整理す る.まず, C₀(P)=0.08mmol/Lでは, Ca濃度がN (Ca)より大きく, 充分に高かった, C₀(P) =0.16mmol/Lでも, Ca濃度はN(Ca)より大きいも のの,減少傾向を示した. C₀(P)=0.32mmol/Lでは, Ca濃度はN(Ca)より小さく,Ca濃度が不足した. 4.3 リン除去の機構 4.1節から,スラグによる リン除去機構には凝集物生成が確認された、また、 岡田ら²⁾が示したHApの溶解度と過溶解度の曲線 を緩用する、彼らは本報告とほぼ同値のCa濃度 におけるHAp溶解度関係曲線を作成したので,参 照した.本除去実験のCa濃度が約1mmol/Lである 中, C₀(P)=0.08~0.32mmol/L, pHが11の濃度条件 をHAp溶解度関係曲線に当てはめると,本条件は 凝集域に相当した.つまり,リン除去実験におい て,pH11という高い条件における主要なリン除 去機構は,凝集法と判断した.

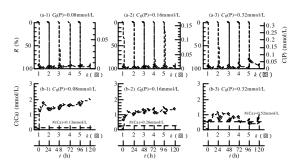


Fig.1 I=24h実験における濃度変化 (pHは11一定)

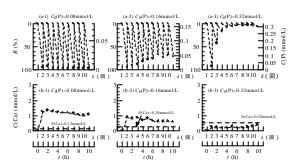


Fig.2 I=1h実験における濃度変化 (pHは11一定)

 Table 1 結果のまとめ

 (a)連続的なリン除去性 (b)Ca濃度の残存性

I	$C_0(P)$ (mmol/L)				$C_0(P)$ (mmol/L)		
	0.08	0.16	0.32		0.08	0.16	0.32
24h 1h			×	24h 1h			×
	良好(高 向がある 率)			低下值		N(Ca); ある;	

4.5 連続除去のためのリン濃度 Table 1(a)(b) から, $C_0(P)$ が低いほど,リン除去性がよく,Ca 濃度の残存性がよい.これは, $C_0(P)$ が低い場合,除去がされるのは明らかで,毎回の除去に伴う Ca濃度の減少が小さくてすむためである.つまり連続除去するためには, $C_0(P)$ が低い方がよい.なお,追加時間を長くとり, $C_0(P)$ が低ければ,Ca濃度はリン追加による減少よりも溶出が上回ることで,Ca濃度は増加傾向となる(Fig.1

5. おわりに 電気炉酸化スラグを用いて凝集法 に基づくリン除去を想定して,pHを11に調節しつつ連続的除去を検討した.連続除去は,スラグからのCaの溶出が重要となり,リン追加間隔は長めがよく,追加されるリン濃度は低い方がよい.参考文献 1)近藤(2002)農土論集218.2)岡田ら(1981)下水道協会誌18(204).

(b-1)).