谷津に生息するシマドジョウの生息環境条件の把握

Habitat environmental conditions of Shimadojyo(Cobits biwae)

in ditch at hill-bottom valley

○柿野亘* 守山拓弥** 水谷正一*** 後藤章***

KAKINO Wataru, MORIYAMA Takumi, MIZUTANI Masakazu, GOTO Akira

1. はじめに シマドジョウは魚食文化の一端を為し、地域資源としてのポテンシャルが高いにもかかわらず、本種に対する保全の意識が低いのが現状である. 加えて、生活史も明らかにされていない. 昨年 12 月に圃場整備前の谷津で水生生物の救出作業を行い、魚類で最も採捕個体数が多かった種はシマドジョウであった. 筆者らはこれまで谷津に生息する魚類の分布特性を把握してきた. そこでは、シマドジョウが通年で谷津に多く生息しており、えぐれ、砂被覆率、最大水深等の生息環境条件下で生息密度が高い傾向があった1). これらの生息環境条件はプールを表すと考察した. ここで、プールとは谷津内水路(以下、水路)どうしの合流部や土管・堰直下などに形成される淵やよどみを指す. そこで、本種の生息場と考えられるプールの役割を解明することを目的とし、調

査を行った.

2. 対象谷津 対象谷津は栃木県東 部に位置する小貝川(一級河川)上 流域の大谷津地区の谷津とした(図1). 本谷津は比較的勾配が緩く谷幅が広 い地形である郷面(地方名)と谷尻 で接している. 谷底面積は8.2haで, 二次谷津の谷頭では耕作放棄地があ り,一次谷津では一部休耕田が見ら れた. ここでは、谷津内の支谷は支 川の次数の数え方に従い、これを二 次谷津とした. 水路は用排兼用であ るが, 低水位部では排水路として利 用されていた. 水路構造は殆ど土水 路であり、一部で U 字溝およびコン クリートによる三面柵渠が見られた. 右岸側水路では谷頭側にあるため池 と右岸側のゴルフ場から水が流下し, 左岸側水路は左岸側に存在する二次谷津から

の:プール
・:瀬

「新木県

St.1

St.2

St.3

St.4

St.5

St.6

St.7

St.8

St.9

St.11

0 50 100 200m

図 1. 対象谷津および調査ステーション Study area and station

湧水と考えられる水路からの流入が見られた.本谷津では17ヶ所のプールが確認された(図1).

^{*}東京農工大学連合大学院, 現 NPO 法人民間稲作研究所(Non-profit Organization of Rice Farming Center)

^{**}東京農工大学連合大学院(United Graduate School of Agricultural Science, Tokyo Univ.of Agri.and Tech)

^{***}宇都宮大学(Utsunomiya Univ) キーワード:微環境,プール,底質

3. 調査方法および解析方法

本谷津では左岸側水路でシマドジョウが多い傾向があった1). そこで、ため池から約50m ごとに存在するプールおよび瀬に距離1mの区間(以下,St)を設定した. 瀬6St、プール5Stの計11Stとした. 調査は2006年2月15,16日に行った. 生息環境条件調査では、St内の流速、深、底質、水路床の柔らかさ、DO、えぐれ面積率、カバー被覆率を計測した. 水深と流速はSt.の上流側と下流側の流心で測定し、その平均値とした. 底質では、粒径の異なる水路床材が占める面積を竹尺で計測した. 水路床の柔らかさは、

採捕調査では、St.の上流側と下流側に目合い2mmの金網を設置し、タモ網(開口40cm、奥行き45cm、目合い2mm)を用いて15分間採捕した. 個体数の計数、標準体長の計測後放流した.

1kg のおもりをつけたピンポール を重みで先端が水路床につきささ

った時の深さとした.

解析では、瀬とプールの St.の生 息密度および生息環境条件を比較 した.

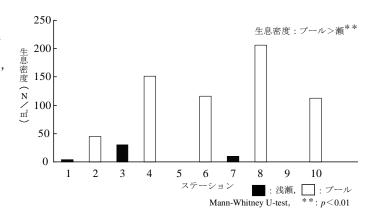


図 2. 各 St.のシマドジョウの生息密度

Density of Shimadojyo at each Station

表 1. プールと瀬の生息環境条件の比較 Comparison between habitat condition at pool and rapids

儿. 白元四 (女 友 儿)。	光件	プール		瀬
生息環境条件	単位	(mean±SD)		(mean±SD)
水深	cm	25.40±4.30	>**	6.00 ± 2.98
流速	m/s	0.05 ± 0.03	< * *	0.32 ± 0.07
DO	mg/L	12.49±0.60		13.04 ± 0.52
水路床の柔らかさ	cm	12.00 ± 12.52	>**	1.82 ± 1.54
カバー被覆面積率	%	1.20 ± 2.67		6.35 ± 1.56
えぐれ面積率	%	18.67±15.07	>*	3.17 ± 7.20
落ち葉被覆面積率	%	17.2±26.4		4.08 ± 6.76
シルト被覆面積率	%	59.43±36.51		28.35±25.33
砂被覆面積率	%	24.35 ± 25.33		9.80 ± 24.00
礫被覆面積率	%	11.28±15.87		17.46±34.84
石被覆面積率	%	4.94 ± 6.97		6.60±11.10
軟岩底面積率	%	0		14.29 ± 37.80
粘土底面積率	%	0		14.29±37.80
コンクリート底面積著	率 %	0		3.97±10.50

Mann-Whitney U-test, **: p < 0.01, *: p < 0.05

4. 結果と考察

生息環境条件調査の結果、プールが瀬よりも水深、水路床の柔らかさが極めて有意に深く、えぐれ面積率が有意に大きかった。流速は瀬の方が極めて有意に大きかった。採捕調査の結果、プールの生息密度が瀬よりも極めて有意に高かった。本種は越冬のために水路床に潜行しており、水路床の柔らかい場所を好むと考えられた。

5. まとめと今後の課題

2月は越冬期にあたり、本種がプールで越冬していることが明らかになった.しかし、通年でのプールの役割および谷津における本種の生活史は不明であり、今後の課題である.

参考文献: 1) 柿野亘 (2006): 谷津水域における淡水魚の生息環境条件に関する研究,東京農工大連合農学研究科博士学位論文