ラオスにおける水田灌溉の実態分析
Analyzing two paddy irrigation projects in Laos

Osamu TODA Koshi YOSHIDA Katsuhiro HIGUCHI Hajime TANJI

背景
ラオスは現在、急激な人口増加により、食料需要の増大
が懸念されている。また、耕作可能地が少なく、現存の農
地で食料需要を満たすなければならない。一方で、灌漑率が
非常に低く、灌漑導入の余地は往々にしてあり、将来、灌
漑導入によるコメ生産性の向上が必須である。図 6 のよう
にラオスは国間河川であるメコン川流域に属するため、不適
切な水利用は下流域に大きな影響を及ぼす。適切な灌漑を
行うためには灌漑水量の評価が必要であるが、詳細なデー
タは極めて少ない。早急に、水田灌溉における実態分析を
行わなければならない。

目的
適切な灌漑計画策定に向けた、灌漑の実態分析を目的と
した。まず、コメ生産において重要度の高い 2 の灌漑地
区を研究対象地とし、それぞれについて現地調査を行った。
また、ラオスは灌漑に関するデータが少ないことから、要求されるデータが少ない FAO の CROPWAT モデルを用いて、比較的豊富な収量データから灌漑水量を推定する方法を検討した。

研究対象地
研究対象地はビエンチャン市の KM6 灌漑地区と、サバナケット県の KM35 灌漑地区
とした。KM6 はポンプによって、1,200ha を、KM35 は重力水によって 950ha を、それ
ぞれ灌漑する。本研究では、KM6 を 5 つの小エリアに、KM35 を 13 の小エリアに分割
し、各エリアについて、収量、畦畔高、耕盤深、地下浸透量を計測した。また、両灌
漑地区で流量観測を行い、その実態を調べた。気象データは設置した測器、あるいは、
現地の気象局で収集した。現地調査は 2004 年の雨期、2005 年の雨期・乾期について行
った。

現地調査の結果と考察
圃場データ
これまで少なかった、モデル
に用いることができる詳細な圃場データを
得た（表1）。

<table>
<thead>
<tr>
<th></th>
<th>KM6</th>
<th>KM35</th>
</tr>
</thead>
<tbody>
<tr>
<td>浸透量</td>
<td>3.2 (18)</td>
<td>3.2 (18)</td>
</tr>
<tr>
<td>畦畔高</td>
<td>17.8 (90)</td>
<td>19.4 (230)</td>
</tr>
<tr>
<td>平均収量</td>
<td>16.2 (90)</td>
<td>13.1 (238)</td>
</tr>
</tbody>
</table>

Field data of paddy

*東京大学大学院農学生命科学研究科 Graduate School of Tokyo University
**農村工学研究所 National Institute for Rural Engineering

CROPWAT 雨期 乾期 メコン川
地区の収量を比較した。図 2から分かるように、乾水年であった 04 年降雨期の方が、
両灌漑地区とも収量が高かった。これは、
04 年は降雨による日射抑制が少なかったためであると考えられる。図 1 では、
KM35 について、雨期・乾期の収量を比
較した。乾水年降雨期と乾期で収量が高く、
日射が収量に影響したといえる。

流量観測データ 2は流量観測は両灌漑地
区について、延べ 35 日間行った。図 1 で
KM6 を、図 2で KM35 の灌漑水量の
分布をそれぞれ示している。KM6 では上
流から下流に向かって灌漑水量の分布が
減っており、上流最上部水であった。一方
の KM35 は、日によって灌漑エリアが
異なる灌漑を行っていた。ポンプ揚水で
水が十分な KM6 と異なり、貯水池の水
が不十分である KM35 では、節水のために
灌漑を行わなければならないと考えら
れる。

モデルによる灌漑水量推定 2004年実証
により、短期的な灌漑水量は計測可能で
あったが、栽培期間全体については計測
が困難である。そこで、少ないデータか
らでも計算が可能な CROPWAT を用いて、
灌漑水量の推定を試みた。

その結果、KM35 の乾水年と 05 年乾期
について、灌漑水量の推定が可能であっ
た。しかし、多雨年であった 2004 年雨期
については良好な結果が得られなかった。
この原因としてモデルの構造上の欠
点が考えられた。

日照時間の影響を考慮できない
最大収量から減収していく構造上与
えて最大収量の影響が大きい

結論
短期間の水利用実態についてはデータを得たが、全栽培期間の現状把握には到らな
かった。CROPWAT を用いて収量データから灌漑水量を推定する手法を試み、2 つの問
題点が見つかった。今後、これらの問題を考慮したモデルの改良が必要である。

謝辞
本研究は科学技术振興機構(JST)-CREST の援助を受けて行っている。