2 次元単層モデルによる東郷池の湖流と塩分拡散の数値シミュレーション Numerical Simulation of Water Motion and Salinity Diffusion in Lake Togo by Two-dimensional One-layer Model

○榊 恭平*・原田昌佳**・吉田 勲***・平松和昭** Kyouhei Sakaki, Masayoshi Harada, Isao Yoshida and Kazuaki Hiramatsu

1. はじめに 東郷池は鳥取県中部に位置する汽水湖であり、ヤマトシジミなどの内水面 漁業が盛んである.流出河川である橋津川を海水が溯上するが、現在では水門が設置され 低塩分化が進んでいる.そのためヤマトシジミの漁獲量が激減しており、鳥取県はシジミ 増産のため夏季に塩分が 5psu 以上となるような水門管理を行っている.しかしながら、塩 分上昇に伴う水環境の悪化と生態系への影響が懸念されるため、水環境の保全や改善に配 慮した水門管理が求められており、海水流入が水域内の水理学的、水質学的さらには生態

学的現象に及ぼす影響を検討することは重要な課題で ある.そこで本研究では、2次元単層モデルを通じて 東郷池における湖流の流動特性ならびに塩分の拡散特 性を検討した.

 基礎方程式と計算方法 平均湖面上に原点をとり、 東向きに x 軸,北向きに y 軸,鉛直上向きに z 軸とす る右手系の直交座標系(水面 z=ζ,湖底 z=-h)を考 え,2次元単層モデルの基礎式を Table 1 にまとめる.
 ここで,流速 u, v と塩分 c は水深方向の平均値である.
 式(1)中の q_m は河川流量を表すが、河川合流口の格子 点に適用する場合のみに付加される項であり、本研究 では橋津川の河川流量のみを考慮した.また、式(4)

Fig. 1 Computed area of Lake Togo and distribution of water depth.

 ・ 連続の式 ・ 連続の式 ・ な方向の運動方程式 ・ な方向の運動方程式 (1) 向成分 (m/s) c:塩分 (psu) f:コリオリ係数 f=2ωsin(πφ/180) (2) ω:地球の自転角速度 φ:緯度 (=35.5°) K_x, K_y: 水平拡散係数 (=100m²/s) (3) ρ:湖水の密度 p_a: 空気の密度 y_a²: 風応力の摩擦抵抗 (4) γ²: 水底摩擦応力係数 (5) (4) γ²: 水底摩擦応力係数 (6) (5, 5) (7) (5) (7) (5) (7) (5) (7) (5) (7) (5) 			
$ \frac{\partial \zeta}{\partial t} + \frac{\partial}{\partial x} \{ (\zeta + h)u \} + \frac{\partial}{\partial y} \{ (\zeta + h)v \} + q_m = 0 $ $ \cdot x \ f \cap o \ \overline{u} \ \text{mb} \ f \ \text{eta} \ f \ (\zeta + h)u \} + \frac{\partial}{\partial y} \{ (\zeta + h)v \} + q_m = 0 $ $ \cdot x \ f \cap o \ \overline{u} \ \text{mb} \ f \ \text{eta} \ f \ (\zeta + h)u \} + \frac{\partial}{\partial y} \{ (\zeta + h)v \} + q_m = 0 $ $ \cdot y \ f \cap o \ \overline{u} \ \text{mb} \ f \ \text{eta} \ f \ (\zeta + h)u \} + \frac{\partial}{\partial y} = fv - g \ \frac{\partial \zeta}{\partial x} + \frac{1}{\rho(\zeta + h)} (\tau_{x,s} - \tau_{x,b}) $ $ \cdot y \ f \cap o \ \overline{u} \ \text{mb} \ f \ \text{eta} \ f \ (\zeta + h)u \} + \frac{\partial}{\partial y} = -fu - g \ \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta + h)} (\tau_{y,s} - \tau_{y,b}) $ $ \cdot \ \frac{\partial v}{\partial t} + u \ \frac{\partial v}{\partial x} + v \ \frac{\partial v}{\partial y} = -fu - g \ \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta + h)} (\tau_{y,s} - \tau_{y,b}) $ $ \cdot \ \frac{\partial v}{\partial t} \ (\zeta + h)c \} + \frac{\partial}{\partial x} \{ (\zeta + h)vc \} = \frac{\partial}{\partial x} \{ (\zeta + h)K_x \ \frac{\partial c}{\partial x} \} + \frac{\partial}{\partial y} \{ (\zeta + h)K_y \ \frac{\partial c}{\partial y} \} + S_m $ $ (4) \qquad f \ (2) \ w : \ \text{mix} \ O \ O \ \text{mix} \ O \ \mix} \ O \ O \ \text{mix} \ O \ \mix} $	・連続の式		u, v:流速のx, y方
$ \begin{array}{ll} \partial t & \partial x & (\zeta + h)x + \partial y & (\zeta + h)y + \partial y & (\zeta + h)x \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d & d \\ \partial t & d & d & d & d & d & d & d & d & d &$	$\frac{\partial \zeta}{\partial t} + \frac{\partial}{\partial t} \{ (\zeta + h) u \} + \frac{\partial}{\partial t} \{ (\zeta + h) u \} + a_{t,t} = 0$	(1)	向成分 (m/s)
$ \begin{array}{lll} \begin{array}{lll} x \ f & f & f & f & f & f & f & f & f & f$	$\partial t = \partial x \left((y + h) \partial y \right) + \partial y \left((y + h) \partial y \right) + q_m = 0$	(-)	c: 塩分 (psu)
$ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = fv - g \frac{\partial \zeta}{\partial x} + \frac{1}{\rho(\zeta + h)} (\tau_{x,s} - \tau_{x,b}) $ $ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = fv - g \frac{\partial \zeta}{\partial x} + \frac{1}{\rho(\zeta + h)} (\tau_{y,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -fu - g \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta + h)} (\tau_{y,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -fu - g \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta + h)} (\tau_{y,s} - \tau_{y,b}) $ $ \frac{\partial u}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -fu - g \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta + h)} (\tau_{y,s} - \tau_{y,b}) $ $ \frac{\partial u}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -fu - g \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta + h)} (\tau_{y,s} - \tau_{y,b}) $ $ \frac{\partial u}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -fu - g \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta + h)} (\tau_{y,s} - \tau_{y,b}) $ $ \frac{\partial u}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -fu - g \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta + h)} (\tau_{y,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -fu - g \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta + h)} (\tau_{y,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -fu - g \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta + h)} (\tau_{y,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -fu - g \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta + h)} (\tau_{y,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -fu - g \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta + h)} (\tau_{y,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -fu - g \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta + h)} (\tau_{y,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -fu - g \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta + h)} (\tau_{y,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + \frac{1}{\rho(\zeta + h)} (\tau_{x,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + \frac{1}{\rho(\zeta + h)} (\tau_{x,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + \frac{1}{\rho(\zeta + h)} (\tau_{x,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + \frac{1}{\rho(\zeta + h)} (\tau_{x,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + \frac{1}{\rho(\zeta + h)} (\tau_{x,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + \frac{1}{\rho(\zeta + h)} (\tau_{x,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + \frac{1}{\rho(\zeta + h)} (\tau_{x,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + \frac{1}{\rho(\zeta + h)} (\tau_{x,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + \frac{1}{\rho(\zeta + h)} (\tau_{x,s} - \tau_{y,b}) $ $ \frac{\partial v}{\partial t} + \frac{1}{\rho(\zeta + h)} $ $ \frac{\partial v}{\partial t} + \frac{1}{\rho(\zeta + h)} $ $ \partial $	・x 方向の運動方程式		f: コリオリ係数
$ \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} = fv - g \frac{\partial \zeta}{\partial x} + \frac{1}{\rho(\zeta + h)} (\tau_{x,s} - \tau_{x,b}) $ $ (2) \omega : \text{ muscollexfield} $ $ \phi : \text{ $\$ilde{x} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = fu - g \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta + h)} (\tau_{y,s} - \tau_{y,b}) $ $ (3) \rho : \text{ $\$ilde{x} + w \frac{\partial v}{\partial y} = -fu - g \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta + h)} (\tau_{y,s} - \tau_{y,b}) $ $ (3) \rho : \text{ $ilde{x} + 0 \cos g \\ p_a : 2 \cos g \cos g \\ p_a : 2$	$\partial u = \partial u = \partial f = 1$		$f = 2\omega \sin(\pi\phi/180)$
$\begin{aligned} d & cx & cy & cx & p(\zeta + h) \\ \cdot y & fin & 0 \\ \hline \vartheta & t & u \\ \hline \partial v \\ \partial t & + u \\ \hline \partial v \\ \partial $	$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial t} = fv - g \frac{\partial g}{\partial x} + \frac{1}{\sigma(\zeta + b)} (\tau_{x,s} - \tau_{x,b})$	(2)	 ω: 地球の目転角速度
 ・ y 方向の運動方程式 $ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -fu - g \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta+h)} (\tau_{y,s} - \tau_{y,b}) $ ・ 塩分の拡散方程式 $ \frac{\partial}{\partial t} \{(\zeta+h)c\} + \frac{\partial}{\partial x} \{(\zeta+h)uc\} + \frac{\partial}{\partial y} \{(\zeta+h)vc\} = \frac{\partial}{\partial x} \{(\zeta+h)K_x \frac{\partial c}{\partial x}\} + \frac{\partial}{\partial y} \{(\zeta+h)K_y \frac{\partial c}{\partial y}\} + S_m $ (3) $\rho: 湖 \times O 密度$ $\rho_a: 空気の密度$ $\gamma_a^2: 風応力の摩擦抵抗$ $K_x, K_y: * * 4 拡散係数$ $(=100m^2/s)$ (3) $\rho: 湖 \times O 密度$ $\gamma_a^2: 風応力の摩擦抵抗$ $F = \gamma_a^2 \rho_a \sqrt{W_x^2 + W_y^2} (W_x, W_y)^T, (\tau_{x,b}, \tau_{y,b})^T = \gamma_b^2 \rho \sqrt{u^2 + v^2} (u, v)^T - \beta (\tau_{x,s}, \tau_{y,s})^T (5)$ $K_x, K_y: * 4 ± th (K_x)$ $(=100m^2/s)$ $\rho: i i \pi O 密 g$ $\rho_a: 2 空気の密 g$ $\gamma_a^2: 風応力の摩擦抵抗$ $F = (-1, 0)$ $F = (-1, 0)$ 	$\alpha \alpha \partial y \qquad \alpha \rho(\zeta + n)$		ϕ :
$ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -fu - g \frac{\partial \zeta}{\partial y} + \frac{1}{\rho(\zeta+h)} (\tau_{y,s} - \tau_{y,b}) $ $ (3) \begin{array}{c} (=100m^{2}/s) \\ \rho: \ \text{inthermal matrix} \\ \beta: \ \text{inthermal matrix} \\ \frac{\partial}{\partial t} \{(\zeta+h)c\} + \frac{\partial}{\partial x} \{(\zeta+h)uc\} + \frac{\partial}{\partial y} \{(\zeta+h)vc\} = \frac{\partial}{\partial x} \{(\zeta+h)K_{x} \frac{\partial c}{\partial x} \} + \frac{\partial}{\partial y} \{(\zeta+h)K_{y} \frac{\partial c}{\partial y} \} + S_{m} \end{array} $ $ (4) \begin{array}{c} \gamma_{a}: \ \text{expansion matrix} \\ \gamma_{a}: \ \text{expansion matrix} \\ (4) \gamma_{b}: \ \text{inthermal matrix} \\ (5) \gamma_{b}: \ \text{inthermal matrix} \\ (6) \gamma_{b}: \ \text{inthermal matrix} \\ (7) \gamma_{b}: \ \text{inthermal matrix} \\ (6) \gamma_{b}: \ \text{inthermal matrix} \\ (7) \gamma_{b}: \ \text{inthermal matrix} \\ (8) \gamma_{b}: \ \text{inthermatrix} \\ (8) \gamma_{b}: \ inthermal matr$	・y方向の運動方程式		$K_x, K_y: 水 半 拡散係数$
$\begin{aligned} & \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} = -ju - g \frac{\partial}{\partial y} + \frac{\partial}{\rho(\zeta+h)} (t_{y,s} - t_{y,b}) \\ & \cdot \text{ is } \beta \text{ o is } \text{ is } 5 \text{ f a } \text{ is } \beta \text{ o is } \text{ is } 5 \text{ f a } \text{ is } \beta \text{ o } \beta \text{ is } \beta \text{ is } \beta \text{ o } \beta \text{ is } \beta \text{ is } \beta \text{ o } \beta \text{ is } \beta \text{ is } \beta \text{ o } \beta \text{ is } \beta \text{ is } \beta \text{ o } \beta \text{ i } \beta \text{ o } \beta \text{ o } \beta \text{ i } \beta \text{ o } \beta \text{ o } \beta \text{ o } \beta \text{ o } \beta \text{ i } \beta \text{ o } \beta \text{ o } \beta \text{ i } \beta \text{ o } \beta \text$	$\partial v = \partial v = \partial v = \partial \zeta = 1 (z = z)$	(2)	$(=100m^{2}/s)$
・ 塩分の拡散方程式 $\frac{\partial}{\partial t} \{(\zeta+h)c\} + \frac{\partial}{\partial x} \{(\zeta+h)uc\} + \frac{\partial}{\partial y} \{(\zeta+h)vc\} = \frac{\partial}{\partial x} \{(\zeta+h)K_x \frac{\partial c}{\partial x}\} + \frac{\partial}{\partial y} \{(\zeta+h)K_y \frac{\partial c}{\partial y}\} + S_m (4)$ $F_x = \frac{\partial}{\partial x} \{(\zeta+h)uc\} + \frac{\partial}{\partial y} \{(\zeta+h)vc\} = \frac{\partial}{\partial x} \{(\zeta+h)K_x \frac{\partial c}{\partial x}\} + \frac{\partial}{\partial y} \{(\zeta+h)K_y \frac{\partial c}{\partial y}\} + S_m (4)$ $F_x = \frac{\partial}{\partial x} \{(\zeta+h)uc\} + \frac{\partial}{\partial y} \{(\zeta+h)vc\} = \frac{\partial}{\partial x} \{(\zeta+h)K_x \frac{\partial c}{\partial x}\} + \frac{\partial}{\partial y} \{(\zeta+h)K_y \frac{\partial c}{\partial y}\} + S_m (4)$ $F_x = \frac{\partial}{\partial x} \{(\zeta+h)uc\} + \frac{\partial}{\partial y} \{(\zeta+h)vc\} = \frac{\partial}{\partial x} \{(\zeta+h)K_x \frac{\partial c}{\partial x}\} + \frac{\partial}{\partial y} \{(\zeta+h)K_y \frac{\partial c}{\partial y}\} + S_m (4)$ $F_x = \frac{\partial}{\partial x} \{(\zeta+h)uc\} + \frac{\partial}{\partial y} \{(\zeta+h)uc\} + \frac{\partial}{\partial y} \{(\zeta+h)vc\} = \frac{\partial}{\partial x} \{(\zeta+h)K_x \frac{\partial c}{\partial x}\} + \frac{\partial}{\partial y} \{(\zeta+h)K_y \frac{\partial c}{\partial y}\} + S_m (4)$ $F_x = \frac{\partial}{\partial x} \{(\zeta+h)uc\} + \frac{\partial}{\partial y} \{(\zeta+h)uc\} + \frac{\partial}{\partial y} \{(\zeta+h)vc\} = \frac{\partial}{\partial x} \{(\zeta+h)K_x \frac{\partial c}{\partial x}\} + \frac{\partial}{\partial y} \{(\zeta+h)K_y \frac{\partial c}{\partial y}\} + S_m (4)$ $F_x = \frac{\partial}{\partial x} \{(\zeta+h)uc\} + \frac{\partial}{\partial y} \{(\zeta+h)vc\} = \frac{\partial}{\partial x} \{(\zeta+h)K_x \frac{\partial c}{\partial x}\} + \frac{\partial}{\partial y} \{(\zeta+h)K_y \frac{\partial c}{\partial y}\} + S_m (4)$ $F_x = \frac{\partial}{\partial x} \{(\zeta+h)uc\} + \frac{\partial}{\partial y} \{(\zeta+h)uc\} + \frac{\partial}{\partial$	$\frac{\partial t}{\partial t} + u \frac{\partial x}{\partial x} + v \frac{\partial y}{\partial y} = -fu - g \frac{\partial y}{\partial y} + \frac{\partial (\zeta + h)}{\rho(\zeta + h)} (t_{y,s} - t_{y,b})$	(3)	ρ : 湖水の密度
・ 塩分の拡散方程式 $\frac{\partial}{\partial t}\{(\zeta+h)c\} + \frac{\partial}{\partial x}\{(\zeta+h)uc\} + \frac{\partial}{\partial y}\{(\zeta+h)vc\} = \frac{\partial}{\partial x}\left\{(\zeta+h)K_x\frac{\partial c}{\partial x}\right\} + \frac{\partial}{\partial y}\left\{(\zeta+h)K_y\frac{\partial c}{\partial y}\right\} + S_m (4)$ $\begin{array}{c} \gamma_a^2 : \square (\lambda \int O \mbox{$\stackrel{$\square$}{$}$} \otimes M (1) \otimes M ($			$ \rho_a: 空気の密度 $
$ \frac{\partial}{\partial t} \{ (\zeta+h)c \} + \frac{\partial}{\partial x} \{ (\zeta+h)uc \} + \frac{\partial}{\partial y} \{ (\zeta+h)vc \} = \frac{\partial}{\partial x} \left\{ (\zeta+h)K_x \frac{\partial c}{\partial x} \right\} + \frac{\partial}{\partial y} \left\{ (\zeta+h)K_y \frac{\partial c}{\partial y} \right\} + S_m (4) $ $ \gamma_b^{2} : \kappa \bar{k} \bar{k} \bar{k} \bar{k} \bar{k} \bar{k} \bar{k} \bar{k}$	 ・ 塩分の払取力程式 		γ_a^2 : 風心刀の摩擦抵抗
$ \frac{\partial t}{\partial x} \left[(\xi + u) F_x \frac{\partial x}{\partial x} \right]^T = \gamma_a^2 \rho_a \sqrt{W_x^2 + W_y^2} \left[(W_x, W_y)^T, (\tau_{x,b}, \tau_{y,b})^T \right]^T = \gamma_b^2 \rho \sqrt{u^2 + v^2} \left[(u, v)^T - \beta \left(\tau_{x,s}, \tau_{y,s} \right)^T \right]^T (5) $	$\frac{\partial}{\partial \{(\zeta+h)c\}} + \frac{\partial}{\partial \{(\zeta+h)uc\}} + \frac{\partial}{\partial \{(\zeta+h)uc\}} = \frac{\partial}{\partial \{(\zeta+h)K, \frac{\partial c}{\partial c}\}} + \frac{\partial}{\partial \{(\zeta+h)K, \frac{\partial c}{\partial c}\}} + S_{\text{sc}}$	(4)	徐数(= 0.0013)
・水面摩擦応力 τ_s と底面摩擦応力 τ_b $(\tau_{x,s,}\tau_{y,s})^{\mathrm{T}} = \gamma_a^2 \rho_a \sqrt{W_x^2 + W_y^2} (W_x, W_y)^{\mathrm{T}}, (\tau_{x,b,}\tau_{y,b})^{\mathrm{T}} = \gamma_b^2 \rho \sqrt{u^2 + v^2} (u, v)^{\mathrm{T}} - \beta (\tau_{x,s,}\tau_{y,s})^{\mathrm{T}} (5)$ $(\tau_{x,s,\tau_{y,s}})^{\mathrm{T}} = \gamma_a^2 \rho_a \sqrt{W_x^2 + W_y^2} (W_x, W_y)^{\mathrm{T}}, (\tau_{x,b,\tau_{y,b}})^{\mathrm{T}} = \gamma_b^2 \rho \sqrt{u^2 + v^2} (u, v)^{\mathrm{T}} - \beta (\tau_{x,s,\tau_{y,s}})^{\mathrm{T}} (5)$ $(\tau_{x,s,\tau_{y,s}})^{\mathrm{T}} = \gamma_a^2 \rho_a \sqrt{W_x^2 + W_y^2} (W_x, W_y)^{\mathrm{T}}, (\tau_{x,b,\tau_{y,b}})^{\mathrm{T}} = \gamma_b^2 \rho \sqrt{u^2 + v^2} (u, v)^{\mathrm{T}} - \beta (\tau_{x,s,\tau_{y,s}})^{\mathrm{T}} (5)$	$\partial t \stackrel{((\mathbf{y} + n)\mathbf{z})}{\partial x} = \partial x \stackrel{((\mathbf{y} + n)\mathbf{z})}{\partial y} \stackrel{((\mathbf{y} + n)\mathbf{z})}{\partial y} = \partial x \stackrel{((\mathbf{y} + n)\mathbf{z})}{\partial x} \stackrel{((\mathbf{y} + n)\mathbf{z})}{\partial x} \stackrel{((\mathbf{y} + n)\mathbf{z})}{\partial y} ($	(-)	%:水低摩擦心刀係数
・水面摩擦応力 $\tau_s \mathcal{E}$ 医面摩擦応力 τ_b $ (\tau_{x,s,\tau_{y,s}})^{\mathrm{T}} = \gamma_a^2 \rho_a \sqrt{W_x^2 + W_y^2} (W_x, W_y)^{\mathrm{T}}, (\tau_{x,b,\tau_{y,b}})^{\mathrm{T}} = \gamma_b^2 \rho \sqrt{u^2 + v^2} (u, v)^{\mathrm{T}} - \beta (\tau_{x,s,\tau_{y,s}})^{\mathrm{T}} (5) $ $ \beta : R \overline{x} (=1.0)$ $ W_x, W_y : 湖面上風速 \mathcal{O}$ $ x, y \overrightarrow{x} \partial ((m/s))$	北天廃墟広古 しば天廃墟広古		(=0.0026)
$ (\tau_{x,s},\tau_{y,s})^{\mathrm{T}} = \gamma_{a}^{2}\rho_{a}\sqrt{W_{x}^{2}+W_{y}^{2}}(W_{x},W_{y})^{\mathrm{T}}, (\tau_{x,b},\tau_{y,b})^{\mathrm{T}} = \gamma_{b}^{2}\rho\sqrt{u^{2}+v^{2}}(u,v)^{\mathrm{T}} - \beta(\tau_{x,s},\tau_{y,s})^{\mathrm{T}} $ (5) $ (5) \qquad (7) \qquad$	・水面摩擦応刀 τ_s と 底面摩擦応刀 τ_b		β : (β) (=1.0)
(x,s, y,s) = (aPa)(x + y)(y, y) + (x,b, y,b) = (bP)(a + b)(a,b) = P(x,s, y,s) $(x, y) = (bP)(a + b)(a,b) = P(x,s, y,s) $ $(x, y) = (bP)(a + b)(a,b) = P(x,s, y,s) $ $(x, y) = (bP)(a + b)(a,b) = P(x,s, y,s)$	$(\tau - \tau)^{T} = v^{2} \alpha \sqrt{W^{2} + W^{2}} (W - W)^{T} (\tau - \tau)^{T} = v^{2} \alpha \sqrt{u^{2} + v^{2}} (u - v)^{T} - \beta (\tau - \tau)^{T}$	(5)	W _x , W _y : 湖面上風速の
	(x,s, y,s) = (aray(x, y, y), (x,b, y,b)) = (brow + c (u,b)) p((x,s, y,s))	(-)	x,y 成分(m/s)

Table 1 Formulations of two-dimensional one-layer Model

^{*}鳥取大学大学院農学研究科, Graduate School of Agricultural Science, Tottori University, **九州大学 大学院農学研究院, Faculty of Agriculture, Kyushu University, ***鳥取大学名誉教授, Emeritus professor, Tottori University キーワード:汽水湖,湖流,塩分拡散,2次元単層モデル, ADI法

中の S_m は外部からの単位時間,単位面積当たりの負荷 量であり,橋津川から流入する海水の塩分を表す.式 (1)~(5)の数値解法には ADI 法を適用した(金子ら, 1975).橋津川の合流口を除く境界は閉境界として扱 い,離散化距離はx,y方向とも100m,計算タイムス テップは10sとした.

3. 結果と考察 静水状態から一様風速 3.0m/s が作用 する場合を考え、以下の条件の下で吹送開始後2週間 まで計算を行った.東郷池周辺では日中で北風(海風), 夜間で南風(陸風)が卓越することを考慮し,12時間 毎に北風と南風が交互に吹くものとした. また, 潮汐

による橋津川を通じた海水流入と湖水流出 を考慮して,式(1)中のqmは12時間周期の 正弦波で与えた.流量調査に基づいて振幅 は4.0m³/sとし,また河川水の塩分は15psu, 湖水の初期塩分は全域 0.5psu とした.

東郷池を Fig.1 のように 4 つの領域に分 割し,各領域に No.1~No.4の定点を設定 した.計算結果は領域全体として吹送開始 約8日後に定常的変動に達した. Fig.2に 9日後の各定点の塩分の時間変動を, Fig. 3 に北風および南風における湖流ベクトルを 示す.まず,領域 I, II における塩分の時

(1) North wind 間変動は、海水流入開始後約6日で定常的変動に達し、いずれも海水流入の影響は約3時 間遅れで現れた.また,領域 I, II の塩分はそれぞれ 5~8.5psu, 5~12psu の範囲で変動し, 領域 II で海水流入の影響が最も強いことがわかる.流動特性については、領域 I で順流, 領域 II で逆流が生じる傾向にあり、還流の発生は見られない. つぎに、領域 III, IV の塩

Fig. 2 Variations with time of discharge of Hashizu River and salinity at each points.

Fig. 3 Flow patterns under the north and south wind conditions.

時計回りの強い還流が生じるのに対し,領域 IV では風向に関わらず流速は 1cm/s 未満であ り,ほぼ停留状態であった. 4. おわりに 本研究では、2次元単層モデルを通じて塩分の拡散特性および湖流の流動特 性について検討した.その結果,流入出量が最大で4.0m³/sとなる12時間周期の変動では, 約8日後にはシジミの産卵にとって最適な塩分に達することがわかった.

分の変動特性は、時間変動は流入開始後約8日で定常的変動に達し、流入塩分の影響は約 5~6時間遅れで現れ、塩分は 6.5~7.5psu の範囲で推移し、橋津川を通じた塩分の流入・ 流出の影響は小さいという点で類似している.また,領域 I, II に比べ塩分上昇は低いが, ヤマトシジミの産卵時期の最適塩分である 5psu 以上(中村, 2000)には達している.一方, 湖流の流動特性は領域 III と IV で大きく異なる. 領域 III では北風で反時計回り, 南風で

参考文献 金子ら(1975): ADI 法による潮流汚染拡散の数値計算,港湾技術研究所報告, 14, 1-17. 中村 (2000):日本のシジミ漁業,たたら書房, 1-17, 176-186.