イモゴライトの分散凝集と負電荷の電場の強さ

Colloidal Stability of Imogolite and the Intensity of Electric Field of Negative Charge

○馬	玉露*	軽部重太郎**			
Ma	YuLu	Jutaro Karube			

1. はじめに

イモゴライトは、酸性で分散しアルカリ性で凝集する。イモゴライトの正電荷はチューブの外側 に発現するが、負電荷はチューブの内側に発現すると考えられている。酸性では正電荷が卓越する ために分散する。しかし、アルカリ性では負電荷が卓越するにも関わらず凝集する。この理由を負 電荷の電場の強さから考察した。ガウスの法則から、チューブの内側と外側での負電荷の電場の強 さを導くことができる。チューブの外側における負電荷の電場により正のイオンが吸着するので、 イオン交換量を求める事により負電荷が測定できる。しかし、その電場はイモゴライトを分散させ るだけ強くないと考えられる。

2. ガウスの法則からイモゴライトの電場の強さを導く

イモゴライトの形を同軸円筒とする(図1)。負電荷がチューブの内側に均等に分布するとする。図1で $L >> R_B - R_A$ の場合、端面の効果を無視できる。単位長さあたりの電荷を λ として($\lambda = Q/L$)、このときの任意のP点での電場の強さを求める。

図1に示すように、円筒の中心線を軸とし、半径r、長さ*l*の円 筒面をガウス面と考え、その上下の底面と側面とからなる閉曲面*S* について、ガウスの法則を適用する。ガウスの法則より、閉曲面 を貫く電気力束は、その閉曲面の内部に含まれる電荷*q*の総和に 等しい。したがって、誘電体の場合、ガウスの閉曲面*S*を貫く電気 力束*φ*_Eは

$$\phi_E = \bigoplus_{s} \vec{D} \cdot dS = \sum_{s \not \succeq} q_i$$

 $\vec{D} = \varepsilon_r \varepsilon_0 \vec{E}$ 、D:電東密度、E:電場の強さ、

粘土鉱物(雲母)の比誘電率 $\varepsilon_r = 5 \sim 8$ 、真空の誘電率 $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$ 、ゆえに

Eは上下面に対しては垂直な成分を持たない、 $\cos \theta = 0$ 。一方、側面上ではEは面に垂直で、その大きさはどこでも等しい、 $\cos \theta = 1$ となる。したがって、

$$\oint E\cos\theta \, \mathrm{d}S = \iint_{\text{側面}} E\cos\theta \, \mathrm{d}S = \iint_{\text{側面}} E \, \mathrm{d}S = 2\pi r \, l \, E \, \mathrm{COM} \, \mathrm{C$$

^{*}東京農工大学大学院連合農学研究科 United Graduate School, Tokyo University of Agriculture and Technology **茨城大学 Ibaraki University; イモゴライト,分散凝集,ガウスの法則,負電荷,電場の強さ

$$2\pi r l E = \frac{1}{\varepsilon_r \varepsilon_0} \sum_{s \not = s} q_i = \frac{\lambda l}{\varepsilon_r \varepsilon_0}, \quad E = \frac{\lambda}{2\pi r \varepsilon_r \varepsilon_0}$$

と得る。この結果から、イモゴライトのチューブの内側に分布している負電荷の内側と外側におけ る電場の強さを求められる。

3. イモゴライトの電場の強さの計算

表1 イモゴライトの電荷、電荷密度と電場の強さ

рН	$Q_{ m AEC}$	$Q_{ m CEC}$	$\sigma_{\! m AEC}$	$\sigma_{ m CEC}$	$\lambda_{ m AEC}$	$\lambda_{ m CEC}$	E_{AEC}	<i>E</i> CEC内	E_{CEC}
	cmol _c /kg		$\times 10^{-2} \mathrm{C/m^2}$		$\times 10^{-10} \mathrm{C/m}$		×10 ⁸ N/C		
4.4	43.17	8.26	5.78	1.11	3.81	0.24	10.90	2.09	0.70
4.8	35.53	4.76	4.76	0.64	3.14	0.14	8.96	1.20	0.40
5.1	34.15	14.87	4.57	1.99	3.02	0.44	8.61	3.75	1.25
5.7	28.60	26.35	3.83	3.53	2.53	0.78	7.22	6.65	2.22
6.5	26.92	35.72	3.61	4.79	2.38	1.05	6.79	9.01	3.00
6.9	20.91	47.15	2.80	6.32	1.85	1.39	5.28	11.90	3.97
7.5	15.69	55.48	2.10	7.43	1.39	1.63	3.96	14.00	4.67
8.7	7.01	58.54	0.94	7.84	0.62	1.72	1.77	14.80	4.92
9.2	4.86	65.27	0.65	8.74	0.43	1.92	1.23	16.50	5.49

表の中で、Qは電荷、 σ は電荷密度、 λ は単位長さあたりの電荷、Eは電場の強さである。計算式 は σ = $QN_A e/(100 \times SS)$ 、 λ = $2\pi r \sigma$ である。比表面積SS= $7.19 \times 1000 \text{ m}^2/\text{kg}$ 、 N_A = $6.02 \times 10^{23}/\text{mol}$ 、 e = 1.60×10^{-19} Cである。表から、イモゴライトの内側に発現する負電荷の外側における電場の強さ は約 1/3 になることが分かる。

4. 考察

イモゴライトは、アルカリ性で負電荷が卓越する(図2)にも関わらず凝集する。それは、アル カリ性でイモゴライトの内側に発現する負電荷のチューブの外側における電場の強さが約1/3にな り、イモゴライトを分散させるだけ強くなくなるためと考えられる(図3)。ところで、チューブ の外側での負電荷の電場の強さが約1/3になるため、外側での電位も低下する。この内容は単純で はないが、さらに検討したい。

