誘電混合モデルによるカラム内壁面接着型 TDR プローブのキャリブレーション

Calibration of Column-attaching TDR Probe Based on Dielectric Mixing Model

宮本英揮1筑紫二郎1Hideki MiyamotoJiro Chikushi

1. はじめに

近年, 土壌の誘電率から体積含水率 を評価する時間領域反射(TDR)法が普及し, 実用性の 向上を目的に様々な小型 TDR プローブが開発されている。ところが, 高精度が要求される室内の カラム実験では, 土壌カラムへのプローブの埋設に伴う乱れが, 測定誤差の要因となる場合がある。 本研究では, 乱れの影響を低減した TDR プローブとして, カラム内壁面接着型プローブ(CA プロー ブ)を作成し, キャリブレーションを実施した。また, 種々の液体の誘電率測定および電場シミュレー ションにより, CA プローブの誘電特性を評価するとともに, 簡便なキャリブレーション法を検討した。

2. 実験方法

内径 5 cm,高さ3 cmのアクリルカラム内壁面の中央部に,長さ15 cm,幅 0.2 cm,厚さ0.008 cm の銅箔テープを0.2 cm間隔で平行に接着し,CA プローブを作成した(Fig. 1)。1502C型ケーブル テスター(Tektronix 社)を用いて,CA プローブにおける蒸留水,空気,エタノール(重量比:0.2,0.4, 0.6,0.8,1.0 kg kg⁻¹)の誘電率を測定した。比較のために,直径 0.16 cm,長さ10 cmの平行型の 3 線式プローブにおいても,同一媒体の測定を行った。また,定常な飽和浸透流と電場の支配方程 式は数学的に等価であることを踏まえ,2次元水分移動計算ソフト HYDRUS-2D により,蒸留水中

における両プローブ断面周辺の電場シミュレーションを 行い,各プローブの電場特性を検証した。

砂と蒸留水をビニル袋内で混合し,体積含水率 を0, 0.04,0.09,0.14,0.18,0.23,0.27,0.29,0.33,0.34, 0.37,0.40 m³ m⁻³ に調整し,乾燥密度 1.5 Mg m⁻³ で CA プローブ内に充填し誘電率を測定した。蒸留水を加 えながら風乾試料を充填して作成した水分飽和土(*θ* = 0.43)においても誘電率を測定した。そして,得られた各 試料の誘電率に対する Topp 式の適合性を調べた。

3. 結果と考察

Table 1 は,3線式プローブおよび CA プローブで測定 した蒸留水(DW),各濃度 C のエタノール,空気の誘電 率である。3線式プローブでは,蒸留水の誘電率が81.0 と既往の報告に即した適性値を示し,また,エタノール濃 度の増加とともに低下した。一方,CA プローブでも濃度 の増加に対して同様の減少がみられるものの,各媒体の 誘電率は3線式プローブの約半分と小さい。

プローブ断面周辺の相対電界強度の分布を Fig. 2 に

Fig. 1 CA プローブの模式図 Schematic diagram of CA probe.

Table 1 各媒体の誘電率. Dielectric constant of mediums.

	Dielectric constant	
$C (\text{kg} \cdot \text{kg}^{-1})$	3-wire probe	CA probe
0.0 (DW)	81.0	36.4
0.2	67.3	30.5
0.4	56.3	25.8
0.6	41.6	19.6
0.8	29.6	14.5
1.0	19.0	10.0
Air	1.5	3.1

九州大学生物環境調節センター Biotron Institute, Kyushu University キーワード:時間領域反射(TDR),誘電率, Topp式,誘電混合モデル 示す。なお,破線はアクリルの位置を示す。3 線式 プローブの電界強度は,中心から外側へと低くなる 左右対称の分布を示した。一方,CA プローブの電 界強度は左方のみ高く,プローブ背面のアクリルの 影響による偏った分布となった。ここで,CA プロー ブが示す誘電率を,測定媒体部の誘電率 ε_m とアク リル部の誘電率 ε_{ac} の合成誘電率 ε_T と考えると,二 相の誘電混合モデルにより, ε_T は次式で表される。

$$\varepsilon_T = \left\{ w \varepsilon_m^{\alpha} + (1 - w) \varepsilon_{ac}^{\alpha} \right\}^{1/\alpha} \tag{1}$$

w は物質の構成比, α は配列パラメータである。3 線式プローブで測定した誘電率を各媒体の真の誘 電率(Table 1), アクリル部の誘電率 ε_{ac} を 4.0 と考え, 最小二乗法式で(1)式の最適化を行うと, Fig. 3 の 曲線が得られる。曲線の傾きは, $\varepsilon_m = \varepsilon_T$ より小さく, CA プローブは誘電率の大小に対して感度が低いこ と, また, 媒体の真の誘電率を過小評価することが 分かる。最適化曲線において, ε_{ac} にかかる係数 0.628 は w の約 2 倍と大きく, ε_T に与えるアクリル部 の影響が大きいことが, 電界強度分布の偏りと(Fig. 3), 誘電率の過小評価の原因と考えられる。

CA プローブで測定した砂の合成誘電率 ε_{T} と の関係を Fig. 4 に示す。2 あるいは 3 線式プローブ 等の標準的な TDR プローブと同様, CA プローブで 測定された各試料の誘電率は, が高い試料ほど 大きなった。しかし, 測定された ε_{T} と に対して, 多 くの土で高い適合性が確認されている Topp 式 (Topp et al., 1980)は, 全く適合しなかった。

ここで(1)式を ε_m について整理し, Fig. 4 中に併記した Topp 式に代入すると、 は ε_T の関数として次式のように修正できる。

Fig.2 相対電界強度分布 Distribution of relative electric field intensity.

Fig. 3 媒体の誘電率 _mと複合誘電率 _Tの関係 Composite dielectric constant _T vs. dielectric constant of media _m.

Fig. 4 複合誘電率 _Tと体積含水率 の関係 Composite dielectric constant _T vs. water content .

$$\theta = 4.3 \times 10^{-6} \left(\frac{1}{w} \varepsilon_T^{\alpha} - \frac{1 - w}{w} \varepsilon_{ac}^{\alpha} \right)^{3/\alpha} - 5.5 \times 10^{-4} \left(\frac{1}{w} \varepsilon_T^{\alpha} - \frac{1 - w}{w} \varepsilon_{ac}^{\alpha} \right)^{2/\alpha} + 2.92 \times 10^{-2} \left(\frac{1}{w} \varepsilon_T^{\alpha} - \frac{1 - w}{w} \varepsilon_{ac}^{\alpha} \right)^{1/\alpha} - 5.3 \times 10^{-2}$$
(2)

(2)式から得た ε_T - 関係を Fig. 4 に併記した。Topp 式に比べ,修正 Topp 式は実測値に対して 高い適合性を示している。従来,特殊な形状を持つプローブでは,Topp 式に基づく適切な 評価 は出来ないとされてきた。しかし,修正 Topp 式の高い適合性は,エタノール等の媒体を用いて CA プローブの形状特性(*w*, *α*)を評価し,その影響を Topp 式に反映させることにより,Topp 式に基 づく適切な 評価が十分に可能であることを示している。今後は,他のプローブや土においてもデ ータを蓄積し,修正モデルの有効性と適用限界を検証する予定である。

引用文献: Topp, G. C., Davis, J. L., and Annan, A. P. (1980): Water Resour. Res., 16: 574–582.