火山灰土壌の撥水性発現に関する実験的研究

Experimental study on the occurrence of water repellency in volcanic ash soils

○川本 健¹, 吉川康高¹, Per Moldrup², 小松登志子³, 小田匡寬¹
○Ken Kawamoto¹, Yasutaka Yoshikawa¹, Per Moldrup², Toshiko Komatsu³, Masanobu Oda¹

1. はじめに

土壌撥水性(Soil Water Repellency,以下 WR)の発現は、一般に、疎水基を有する 有機物質が土粒子(もしくは団粒)表面を コーティングすることに起因する。これま でのWR研究は、砂質土壌を中心に行われ、 団粒構造が発達した土壌に関する研究は少 ない。さらに、WRの発現度合いに土壌有 機物(Soil Organic Matter,以下 SOM)や土 壌水分状態が及ぼす影響についても未解明 な部分が多い。そこで本研究では、団粒構 造の発達した火山灰土壌を用いてWRの発 現度合いと SOM と土壌水分量・水分ポテ ンシャルの関係を実験的に調べた。そして、 WR を評価する新たな指標を提案した。

2. 試料および実験

試料は福島県の丘陵地より採取した火山 灰土壌で,表層から深さ 30cm より採取し た。試料の土壌物理・化学性を Table 1 に 示した。試料は 2mm 篩で篩別後,水分特 性曲線の測定および WR 試験を行った。WR 試験は,自然体積含水率の試料を段階的に 乾燥することで体積含水率θ=0-0.50 m³m⁻³ の試料を作成した。 水分特性曲線(脱水過程)は,吸引法, 加圧法,水分ポテンシャルメーター測定の 組み合わせで行った。試料のWRの度合い を 90°表面張力(Ninety Degree Surface Tension,以下 NDST)試験を用いて評価し た。NDST 試験は,試料表面に異なる濃度 のエタノール水溶液の液滴を滴下し,その 液滴が5秒内で浸入する最小濃度の水溶液 の表面張力(YND)を以ってWRの指標とす る試験で,YNDが小さい程WRの度合いは 大きくなる。

3. 結果および考察

各深さ試料の WR (γ_{ND}) と θ および pF の 関係を Fig. 1 に示した。ここで、pF は水分 特性曲線 θ -pF の回帰式を利用することに より算出した。WR は深さ 15cm 以浅で確 認でき、WR のピークは試料深さに関わら ず pF=3.5 付近となった。

WR の発現度合いと試料の保水状態との 関係例を Fig. 2 に示した。WR は団粒内間 隙の脱水が適度に進行した水分域でピーク を示し,その後僅かな水分ポテンシャルの 低下(水分量の増加)で急激に消失した。

Depth	Soil texture	Particle density	Clay	Silt	Sand	SOM	SOC	C/N	pH
cm		kg m ⁻³			kg kg ⁻¹ , %				H ₂ O
0-5	Clay loam	2.42	17.8	27.4	54.8	18.3 (0.77)	12.3	16.3	4.9
3-6	Clay loam	2.47	19.9	27.8	52.3	15.7 (0.21)	9.2	16.7	4.9
5-10	Sandy loam	2.54	9.3	22.6	68.0	10.8 (0.51)	7.1	17.5	5.1
10-15	Loam	2.56	10.3	25.0	64.7	7.3 (0.57)	4.6	15.6	5.4
25-30	Sandy loam	2.74	9.2	15.2	75.6	0.5 (0.81)	1.1	7.8	5.5

Table 1 Soil physical and chemical properties for sieved soil materials (2-mm mesh).

¹ 埼玉大学工学部 Department of Civil and Environmental Engineering, Saitama University

²オルボー大学 Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University

³ 埼玉大学理工学研究科 Graduate School of Science and Engineering, Saitama University

Keywords: 土壤撥水性, 土壤有機物, 火山灰土壤, 水分特性曲線

Fig. 1 Water repellency as a function of (a) volumetric soil water content and (b) pF for soil samples at each soil depth. The WR for air-dry samples are plotted at pF = 6.0. The WR for oven-dry samples ($\theta = 0.0$) are plotted at pF = 6.9.

Fig. 1において,WRを有する領域 ($\gamma_{ND} < 0.072$ N/m)の面積 A₀と A_{pF}を 求め,SOMの関数として **Fig. 3**に示し た。ここで,A₀と A_{pF}は Fig. 1の γ_{ND} - θ , γ_{ND} -pF関係を台形近似することにより 求めた。A₀と A_pは SOM との間にいず れも良い線形関係を有し,SOM が大き くなるほど両者は大きくなった。

 A_{θ} と A_{pF} が 0 となる SOM を図中の 回帰式から推定すると、A₀では SOM=2.9%, A_{pF}では SOM=2.5% となっ た (Fig. 3)。これらの値は, 以前に川 本・Banyar (2004) が水滴浸入時間試験 を用いて評価した本試料の WR の下限 値とほぼ一致した。このように, A_θ-SOM, A_{pF}-SOM 関係は, 土壌に WR を生じさせるために必要となる SOM の下限値を与えることができることか ら、WR を評価する新たな指標の一つ として有効であると考えられる。また, WR の生じる水分領域は土性により異 なることから, γ_{ND}-θ関係より決定され る A_{θ} よりも, γ_{ND} -pF 関係より決定され る A_{pF}の方が実際の土壌に適用する際 に有効であると思われる。

謝辞 本実験の遂行にあたり,埼玉大学 21 世紀総合研 究機構研究プロジェクトの補助を受けた。

Fig. 3 The A_{θ} and A_{pF} as a function of SOM.

参考文献

川本 健, Banyar Aung. 2004. 火山灰土壌の撥水性評価に関す る実験的研究 - 有機物含有量と初期水分量が及ぼす影響-. 農業土木学会論文集 第230号: 75-83.