ECH₂O水分プローブの温度依存性校正 Calibration for temperature dependence of ECH₂O probe

齊藤 忠臣^{1) 2)} 藤巻 晴行³⁾ 安田 裕¹⁾ SAITO Tadaomi ^{1) 2)}, FUJIMAKI Haruyuki ³⁾ and YASUDA Hiroshi ¹⁾

<u>1. はじめに</u>

誘電率水分計は,近年の土壌水分の非破壊経時モニタリングに不可欠なツールである. しかし,水分計の出力値が温度依存性を示すことが知られており,正確な水分量決定には 温度依存校正が必要である.土壌・水分量毎に複雑に変化を見せる温度依存性は,長年多 くの研究者を悩ませてきたが,Wraith and Or (1999)による比表面積の概念を盛り込んだ理 論モデルの登場により,多くの現象の説明が可能となった.しかし,理論モデルのみなら ず,経験主義的校正法においても,手法が十分に確立されたとは言い難く,温度依存性校 正にはいくつもの課題が残されている.本研究では,静電容量法を用いた安価な誘電率水 分計として知られるECH₂O土壌水分プローブ(Decagon社)を例にとり,室内実験による プローブ出力値の温度依存性校正手法を提案する.また,作成した校正式を用い,中国黄 土高原における時系列土壌水分データの温度校正を試みる.

<u>2. 実験方法</u>

供試土壌として中国黄土と鳥取砂 丘砂を用いた.高さ 5cm,幅 5cm, 長さ 28cmのプラスティック容器の 中心に,黄土に対してはECH₂Oプロ ーブモデルEC-20 を,砂丘砂に対し てはEC-10 を設置し,土壌を所定の 密度で充填した.また,プローブ中 心から 1cm離れた位置に温度センサ ーを埋設した.容器を恒温槽内に設 置し,水分量と温度を変化させなが ら,プローブ出力値を測定した.水 分量は蒸発法を用いて,風乾から飽 和まで 7~10 段階変化させた.地温 は 5,15,25,35,45 と変化させ た.

<u>3. 結果と考察</u>

Fig.1 に,各水分量におけるプロー ブ出力値の温度に対する応答を示す. Fig.1 より,黄土・砂丘砂両土壌にお

Fig.1. 各水分量におけるECH₂Oプローブ出力値の温度に対する応答: a)黄土 b)鳥取砂丘砂 Response of output of ECH₂O soil moisture probe to temperature change at each water content; a) Loess b) Tottori sand.

いて,各水分量 θ の出力値x(V)が温度Tの一次関数で表せ,また,その勾配は θ に依存 していることがわかる.すなわち,

¹⁾鳥大乾地研²⁾学振³⁾筑波大農工:¹⁾ALRC²⁾JSPS³⁾Tsukuba Univ.: ECH₂O,校正,温度依存,土壤水分

$$\frac{\partial x}{\partial T} = f(\theta) \tag{1}$$

と表せる.黄土において,勾配∂x/∂T は どの水分域でも一貫して正の値であった. 砂丘砂では,高水分域で負であるが,水 分の低下に伴い勾配が緩やかとなり,風 乾では正の勾配となった.両土壌の粒度 分布を考慮すると,上記の傾向は Wraith and Or (1999)の理論モデルで説明される 範疇にあると考えられ,将来的な理論モ デルによる校正が期待される.

式(1)を $T=T_r$ (基準温度)のとき $x=x_r$ という境界条件の下で解くと次式を得る.

 $x = x_r + f(\theta)(T - T_r)$ (2) 基準温度における x_r は θ の関数で表される . $x_r = g(\theta)$ (3)

すなわち,g(θ)とは出力値と水分の関係を 表す土壌固有の校正曲線である.式(3)を式 (2)に代入すると,次式を得る.

 $x = g(\theta) + f(\theta)(T - T_r)$ (4)

Fig.2 に ,黄土における *f*(θ) ,*g*(θ)を示す . *f*(θ)は次の 5 次式で当てはめた .

 $f(\theta) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5$ (5) ここで a_{0-5} は土壌固有の実験定数である. $g(\theta)$ は次の経験式で当てはめた.

 $g(\theta) = a_{\rm g} + b_{\rm g} / (\theta + c_{\rm g}) \tag{6}$

Fig.3. 中国黄土高原地中 5cm における校正前後の水分変化 Variation of non-calibrated/calibrated θ at 5 cm depth in the Loess Plateau, China

ここで, a_g , b_g , c_g は土壌固有の実験定数である.式(5),(6)による当てはめのRMSE(二 乗平均平方誤差)はそれぞれで 7.1×10⁻³(V/K),1.9×10⁻⁴(V)であり,良好な当てはめがな されたといえる.式(4)に式(5),(6)ならびにx,Tを代入し, θ について解くことにより,温 度校正後の水分量 θ_c を得ることが出来る.しかし,黄土の場合, $f(\theta)$, $g(\theta)$ ともに非線形で あり,式(4)を代数的に解くことが出来ない.そこで本研究では二分法を用いて式(4)を満た す数値解を得た.

Fig.3 に,2005 年夏季における,黄土高原北部六道溝流域内の地中 5cmに埋設されたプローブの温度校正前後の水分量変化を示す.Decagon社提供の校正式によって出力値から変換された θ には,地温の日変動に伴う日振幅が明確に見られる.また,Decagon社校正式の θ は,式(6)(土壌固有のx- θ 曲線)により校正された θ とも大きく乖離している.一方,式(4)により温度校正を受けた θ_c は,式(6)の θ と比べ振幅が解消されていることが分かる.また,現地は乾燥地に属し,地表面温度には最大40 ~-20 までの年較差が観測されたが,式(4)による校正により,長期変動においても明確な改善が見られた.

参考文献: Wraith, J.M., and D. Or. 1999. Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: Experimental evidence and hypothesis development. Water Resour. Res. 35:361–369.