植物の蒸散作用による地下水上昇抑制効果に関する基礎実験

An experiment on effect of plant transpiration on groundwater level control

〇城戸淳*、北村義信**、井上光弘***、清水克之**、烏日楽瑪**** Kido Jun, Kitamura Yoshinobu, Inoue Mitsuhiro, Shimizu Katsuyuki, Wurilema

1. はじめに

ウォーターロギング対策として、近年生物的排水が注目されている。この方法は、樹木・ 灌木などの植物根の持つ吸水蒸散作用を利用した排水であり、物理的排水に比べて低コス トであることから、普及の可能性が高い。そこで本研究では、植物を利用した地下水管理 技術の確立を念頭において生物的排水の基礎実験を行い、植物の吸水能力と土中の水分移 動について考察した。

2. 材料と方法

鳥取大学乾燥地研究センターのアリドドー ム棟の塩分動態モニタリングシステム(砂漠 化機構解析風洞システム併設)の2基(No.1 および No.2)を用いて実験を行った。本シス テムの秤量型ライシメータカラム(内径 79.8cm、高さ120cm)の下層に砂丘砂(下方 2/3)と上層に粘土(上方1/3)を2基とも充 填し、それぞれの中央に2年生のウラジロハ コヤナギ(Populus alba L.)を2006年5月2 日(以下、5/2と表記)に移植した。図1は 供試樹木を植栽した秤量型ライシメータとセ ンサー等の配置の概要を示す。

実験はカラムの地下水位を任意に設定し、 植物の吸水による地下水位・体積含水率など の変化の様子を各センサーで測定した。地下 水位の設定は、地上部に設置した給水タンク から給水パイプを経由し、直接カラム底部に

図1実験装置の概要 Outline of experiment

給水を行い、圧力ゲージで地下水位を調整した。実験中の地下水位の変化は、給水パイプ に設置した圧力ゲージにて経時計測した。土壌水分の変化は、土壌面(カラム上端)より 10cm、20cm、30cm、50cm、70cm 深に ADR 水分センサー(Delta-T 社)を各深さ3本ずつ、 各カラムに計15本を埋設し経時計測した。4極塩分センサー(サンケイ理化)も ADR セ ンサーと同様に設置し経時計測した。土壌水分張力は、埋設型感圧センサー(サンケイ理

**鳥取大学農学部 Faculty of Agriculture, Tottori University

***鳥取大学乾燥地研究センター Arid Land Research Center, Tottori University

****鳥取大学大学院連合農学研究科 The United Graduate School of Agricultural Sciences, Tottori University キーワード:ウォーターロギング、地下水位、生物的排水、蒸発散量、土壌水分

^{*}鳥取大学大学院農学研究科 Graduate School of Agriculture, Tottori University

化)を20cm、30cm、50cm、70cm 深に各深さ3 本ずつと100cm 深に1本の計13本を設置し、 経時計測した。蒸発散量はカラム下の電子天秤 で質量の増減を経時計測し、その変化から計算 した。また、風洞内においては、地上部の気温、 湿度を経時計測した。表1は各カラムの実験期 間毎の地下水位の初期設定値を示す。

3. 結果・考察

図2は、8/21~8/30、8/30~9/8、9/8~9/19の3 つの実験期間のカラム2における地下水位およ び積算蒸発散量の経時変化を示す。蒸発散量は 日中の増加が著しいが、ほとんど変化のない日 もある。また、地下水位は蒸発散量の増加とと もに低下しているが、いずれの期間も地下水位 90cm付近で下げ止まりの様相を呈している。こ の水位は、この時点における土壌面蒸発と植物 の吸水(蒸散)による地下水制御能力の及ぶ限 界水位に相当すると考えられる。

図3は、7/24~8/2の期間におけるカラム1の 上端から20cm 深の体積含水率と土壌水分張力 の経時変化を示す。体積含水率は期間内を通し て減少傾向を、土壌水分張力は体積含水率とは 逆に増加傾向を示し、共に日中の変化が卓越し ている。植物の根群域に含まれるカラム上層部 では、光合成の盛んな日中に根の吸水によって 土壌水分量が減少し、土壌水分張力が増加して いると考えられる。これに対して夜間は植物に よる吸水が弱まるため、カラム内の動水勾配に したがって、土壌水分が下層から上層へ移動し、 水分補給されているものと考えられる。このこ とが夜間の土壌水分張力の低下をもたらすと考 えられる。

4. おわりに

本研究を通して植物の吸水能力、蒸発散特性、 地下水変動、土壌水分変動を定量化する見通し がついた。今後も継続的に実験を進めることに より、基礎的データを蓄積し、植物による地下 水位の制御効果と可能性を追究していきたい。

表1 実験期間と地下水位の設定

Period of experiment and initial groundwater level

期間	初期地下水位(cm)	
	カラム1	カラム 2
7/13-7/20	45	55
7/24-8/2	40	50
8/21-8/30	40	40
8/30-9/8	50	50
9/8-9/19	60	60

図2 積算蒸発散量と地下水位の変化 Cumulative evapotranspiration and variation of groundwater level

図3 体積含水率と土壌水分張力の変化 Fluctuation of volumetric water content and soil moisture tension