中山間地圃場におけるエッジ・エフェクトが水消費機構に及ぼす影響評価

Evaluation of the edge-effect on the water consumption

of the hilly and mountainous area field.

○弓削こずえ^{*},中野芳輔^{*},原口智和^{**} Kozue YUGE^{*}, Yoshisuke NAKANO^{*} and Tomokazu Haraguchi^{**}

1.はじめに

中山間地圃場では周囲に高木群落が存在 しているため、圃場表面に到達する日射の 遮断あるいは透過などが生じ、圃場の生産 環境は大きな影響を受ける.このような現 象をエッジ・エフェクトというが、こうし た複雑な日射環境の変化は圃場の水消費機 構に大きな影響を及ぼすと考えられる.本 研究は中山間地圃場におけるエッジ・エフ ェクトが圃場の水消費機構に及ぼす影響を 評価することを目的とするものである.ま ず、中山間地圃場を模した実験圃場におい て土壌水分の動態を明らかにした.また、 土壌面におけるエネルギー収支を推定し、 土壌面における蒸発量を定量化した.

2.実験方法

中山間地圃場におけるエッジ・エフェク トが水消費機構に及ぼす影響を評価するた め、中山間地圃場を模した実験圃場におい て実験を行った. 圃場の概要を Fig.1 に示 す. 圃場後部にはエッジ・エフェクトを再現 するため低木を列状に移植した. この図の No.1~No.5 の地点に土壌水分計 (CS615, Campbell),日射計(LI-200X,LI-COR),熱流 板(PHF-01, Prede)および熱電対を設置した. さらに気温,湿度および風速を測定した. 測定は 2006 年 12 月 13 日から 2007 年 1 月 31 日の期間にかけて 10 分ごとに行った.

3.土壌水分の動態

Fig.1のNo.1~No.5において測定した体 積含水率の変化を**Fig.2**に示す.実験を開

Fig.1 Schematic view of field observation.

始した 12月 13 日には早朝に降雨が生じて いる.降雨後,体積含水率の上昇が継続す る時間は斜面下方の方が長い.また,No. 1を除くと体積含水率は下部の地点ほど高 い.これは,土壌に供給された水分が時間 の経過とともに斜面の下方に移動している ことを示している.また,No.1における体 積含水率は同じ水平面の No.2 や傾斜部の 測定地点に比較すると高い値を示している. これは,No.1においては土壌面が低木の陰 で覆われて土壌面蒸発が抑制されたためで あると考えられる.

4. 土壌面におけるエネルギー収支

2006 年 12 月 19 日にモデル圃場で測定 した値を用いて各地点の純放射量*R_{net}を*次 式より推定した.

$$R_{net} = (1 - \rho_s)S + L_{sky} - L_{soil} \tag{1}$$

ここで, *L_{sky}*: 天空長波放量, *L_{soil}*: 土壌 面長波放射量, *S*: 日射量, ρ_s: 土壌面の アルベド(0.22)である. また, 土壌面にお

^{*}九州大学大学院農学研究院 Faculty of agriculture of Kyushu University

^{**}佐賀大学農学部 Faculty of agriculture of Kyushu University

キーワード:エッジ・エフェクト,消費水量,中山間地

Fig.2 Changes of the volumetric water content.

ける顕熱フラックスHを次式で求めた.

$$H = C_p \rho_a \frac{\mathbf{T}_s - T_a}{r_a} \tag{2}$$

ここで、 C_p : 空気の定圧比熱、 T_a :気温、 T_s :土壌面温度、 r_a :土壌面拡散抵抗、 ρ_a :空気の密度である.これらの値を用 いると潜熱フラックスIEは次式によって 求めることができる.

$$lE = R_{net} - H - G \tag{3}$$

ここで, *G*:地中熱フラックスである. 5. 土壌面蒸発量の推定

2006年12月19日の潜熱フラックスを 式(3)より推定し、この値を積算して各 地点の土壌面蒸発量を求めた.この結果 をFig.3に示す.式(3)のGには熱流 板の測定値を代入した.Fig.3より、土 壌面蒸発量は空間的に大きく異なってい る.特に、No.1およびNo.3では土壌面蒸 発量がマイナスとなっている.これらの 地点では土壌面に到達する日射量が小さ いため、土壌面蒸発が抑制されたと考え られる.一方、No.2およびNo.5では、こ れらに入射する日射量が比較的大きいた め、土壌面蒸発量も高い値を示している.

6.まとめ

本研究では中山間地圃場におけるエッ

ジ・エフェクトが圃場の水消費機構に及ぼ す影響を評価するため、モデル圃場におい て実験を行った.土壌面における体積含水 率の測定結果より、中山間地圃場の土壌水 分は周辺の高木群落による陰と圃場の傾斜 の影響によって複雑に変化することが明ら かとなった.また、土壌面におけるエネル ギー収支を求めて土壌面蒸発量を推定した 結果、空間的な違いが生じていることが明 らかになった.今後は中山間地圃場におけ る土壌中の水分および熱同時輸送モデルを 構築し、圃場の消費水量を精度よく推定す ることを目指したい.

Fig.3 Spatial variation of the soil surface evaporation.

引用文献 Yuge K., et al.: Evaluation of the edge-effect on the farmland production environment in hilly and mountainous areas (1) -Spatial and temporal changes of solar radiation environment-. J. Fac. Agr., Kyushu Univ., 52(1), 175-178 (2007)