高靭性セメント複合材料のひび割れ部における透水性の検討

Study on Water Permeability of ECC with Multiple Cracks

〇坂田 昇^{*},平石剛紀^{*},渡嘉敷勝^{**},増川 晋^{**},長束 勇^{***} SAKATA Noboru^{*}, HIRAISHI Masanori^{*}, TOKASHIKI Masaru^{***}, MASUKAWA Susumu^{***}, NATSUKA Isamu^{***}

1.はじめに

高靱性セメント複合材料(以下,ECC)は,混入される短繊維の補強効果により,優れ たひび割れ分散性能を示し,ひび割れ幅が微細な幅に抑制される材料である.農業用水路 では,特に目地部からの漏水が問題となるが,ひび割れ追従性に優れ,微細ひび割れが複 数生じる ECC を補修材料として用いることで,目地部からの漏水が抑制できると考えら れる.そこで,本研究では,ひび割れ部における ECC の透水性について普通モルタルと の比較を行うことで検討した.

2.試験方法

写真-1 にひび割れ導入(割裂試験)の状況を,写真-2 に透水試験の状況を示す. 100mm×厚さ 15mm の試験体に基長 40mmの ゲージを設置し,設定したひず みまで,割裂試験によりひび割れを導入し た.ひび割れ幅および長さを測定した後, 水頭差により 15kPa の圧力を作用させて 透水試験を行った.なお,試験は,ECC(水 結合材比 32%,高強度 PVA 繊維 2.1Vol.% 混入)と比較用のモルタル(水セメント比 50%,1:3 モルタル)について実施した.

試験体配列を表-1 に示す.ECC の割裂試 験においてひび割れ導入ひずみを3水準とり モルタルは ECC の水準に合わせひび割れ幅 を設定した.対象ひび割れ幅とは, ゲージ の基長である 40mm に初期導入ひずみを掛 けた長さである.

3.試験結果

表-2 にひび割れ測定の代表例を示す. ECC で は,モルタルに比べひび割れ幅が小さく,ひび 割れ長さが長く(ひび割れ本数が多く)なって いることが分かる.

図-1 および図-2 に, ECC およびモルタルの 時間当たりの透水量 - 時間関係を示す.

写真-1 割裂試験状況 Splitting Test

写真-2 透水試験状況 Water Permeability Test

表-1 試験体配列 Outline of Water Permeability Test

		2		
ケース	材料	初期導入ひずみ (μ)	対象ひび割れ幅 (mm)	
• E-1000	ECC	1000	0.04	
E-2000		2000	0.08	
E-5000		5000	0.20	
M-1000	モルタル	-	0.04	
M-2000		-	0.08	
M-5000		-	0.20	
E-2000 E-5000 M-1000 M-2000 M-5000	ECC モルタル	2000 5000 - - - -	0.08 0.20 0.04 0.08 0.20	

表-2 ひび割れ幅測定結果の一例 Number and Width of Cracks

ケース	ひび割れ本数 (本)	平均ひび割れ幅 (mm)	ひび割れ長さ (mm)
E-1000	1	0.023	73.1
E-2000	2	0.033	142.9
E-5000	4	0.054	214.8
M-1000	1	0.038	81.3
M-2000	1	0.080	80.9
M-5000	1	0.321	81.0

図-1より, E-1000は透水開始直後に透水量がほぼ一定の値となっている.E-2000, E-5000

^{*}鹿島建設技術研究所,KAJIMA Technical Research Institute,

^{**}農村工学研究所, National Institute for Rural Engineering,

^{****}島根大学生物資源科学部,Faculty of Life and Environmental Science, Shimane University,

キーワード:ひび割れ,透水,高靱性セメント複合材料,補正式

とひび割れ幅および長さが大きくなると透水量が一定 となるまでに時間を要するが,1日程度でほぼ一定と なった.ひび割れ導入ひずみが大きくなることで,透 水開始直後の透水量は多くなるが,時間と共に減少し, ほぼ一定量になると ECC 全体の差は小さくなった.

図-2より,ひび割れ幅が ECC と同等である M-1000 は,ECC と同様に透水開始後に透水量の減少が起きて いる.しかし,ひび割れ幅の大きい M-2000, M-5000 は透水量が多くなり,時間経過による透水量の減少も ほとんど見られなかった.

次に,ひび割れからの透水量の算出方法として一般 に用いられている式(1)に実験値を当てはめ,補正係数 C(ひび割れの部材内部での曲がりやひび割れの表面 粗さの影響を考慮する係数)を算出した.ひび割れ幅に は表-2の平均ひび割れ幅を用いた.

 $Q = C \cdot \frac{PB}{12\mu L} W^3 \cdot \cdot \cdot \cdot \cdot \cdot \cdot (1)$

ここでQ:試験開始1時間後のひび割れからの透水 量 (g/s), P:水圧(15Pa), B:ひび割れ長さ (cm), μ :水の粘性係数(=1.138×10⁻³Pa·s), L:コンクリ ート厚さ(15cm), W:ひび割れ幅(cm), C:補正係数 である.

Cを解析することで,式(2),(3)のような近似式が得られた.図-3,4に補正係数-ひび割れ幅関係を示す. 図-3より,ECCの場合でも既往の実験と同様に補正 係数はひび割れ幅が大きくなるほど小さくなる傾向を 示した¹⁾。また,本検討から得られたECCの補正係数 は0.815と比較的高い相関を示した.

ECC の補正式

C = 8.92×10⁻⁶ · *x*⁻² + 2.06×10⁻³ (R=0.818) (2) モルタルの補正式

 $C = 5.20 \times 10^{-6} \cdot x^{-2} + 2.70 \times 10^{-2} \quad (\text{R}=0.065) \text{ (3)}$

4 . 結論

ECC は,部材に大きな変形が作用してもひび割れが 分散するため,ひび割れ幅が小さくなり,1本のひび 割れが大きくなるモルタルに比べ,透水量は少なくな ることが確認された.また ECC についてひび割れ幅 と高い相関を持つ補正係数Cに関する式を得た.

参考文献

1) 壹岐直之ほか:沈埋トンネル側壁のひび割れからの 漏水と自癒効果の確認実験,コンクリート工学年次論 文報告書, Vol.17, No.1, pp737-742, 1995

図-1 時間あたりの透水量と経過時間(ECC) Time History of Water Penetration Results in ECC

図-2 時間あたりの透水量と経過時間(モルタル) Time History of Water Penetration Results in Mortar

図-3 補正係数 C とひび割れ幅の関係(ECC) Influence of Crack Width on Correction Coefficient in ECC

図-4 補正係数 C とひび割れ幅の関係(モルタル) Influence of Crack Width on Correction Coefficient in Mortar