Sorption of radionickel in agricultural soils

〇石川奈緒 内田滋夫 田上恵子

OIshikawa Nao, Uchida Shigeo, Tagami Keiko

1. はじめに

ニッケル(Ni)の放射性同位体である⁵⁹Niと⁶³Niは,原子炉の廃炉に多く含まれる放射 化生成物であり,放射性廃棄物として処理・処分される。この2核種は半減期が100年以 上と非常に長く,地層処分後環境中に放出される可能性がある。環境中においてこれらの 放射性核種が放出され農耕地土壌に到達した場合,農耕地から作物に移行し,さらに作物 の摂取により人体へと移行することが考えられる。したがって放射性廃棄物処分に関わる 安全評価を行うためには,放射性Niの土壌環境中での挙動を明らかにしなければならない。 土壌への放射性核種の収着を示すパラメータとして,一般的に土壌-土壌溶液分配係数 (K_d)が用いられる。K_dは土壌群や土壌特性により大きく変動するため,様々な土壌でK_d を取得し,変動に影響する因子について特定する必要がある。しかしながら,Niの土壌へ の収着挙動についての研究は少ない。そこで本研究では、日本全国から採取した様々な農 耕地土壌についてバッチ収着実験を行い,K_dを取得した。さらにK_dと土壌特性との関係に ついても検討を行った。

2. 実験方法

試料採取

日本全国の水田 39 地点,畑 27 地点(Andosol 7, Cambisol 4, Fluvisol 50,他 5)から表 層土壌(地表 0-20 cm)を採取し,風乾後 2 mmのふるいを通して実験に使用した。表1 に,主な土壌特性の幾何平均値(GM)について土壌群毎に示す。

・ バッチ収着実験

50 mLのポリプロピレン容器に風乾土壌 3 gと超純水 30 mLを加え,120 rpm,23°C条件下 で 24 時間振とうした。その後,約 10 kBqの⁶³Niを⁶³NiCl₂として添加した。さらに 7 日間, 予備振とう時と同様の条件で振とうし、収着平衡に達した後,3000 rpmで 10 分間遠心分離 し、上澄み液を 0.45 μ mのメンブランフィルターでろ過した。ろ液の⁶³Niの放射能濃度を液 体シンチレーションカウンターで測定し、土壌-土壌溶液分配係数(K_d)を次式から求め た。

$$K_{\rm d} = \frac{\left(C_i - C_e\right)}{C_e} \cdot \frac{W_l}{W_s}$$

ここで C_i は⁶³Niの初期濃度(Bq/L), C_e は収着平衡後のろ液中の⁶³Ni濃度(Bq/L), W_i , W_s はそれぞ液の容量(L)と風乾土壌質量(kg)である。

土壤分類	粘土含量	電気伝導度 (1:5)	рН	塩基置換容量	全炭素含量	活性鉄含量	
	(%)	(µS/cm)		(meq/100g)	(g/kg)	(g/kg)	
Andosol $(n = 7)$	12.2	207	6.4	16.0	35	12.6	
Cambisol $(n = 4)$	15.0	275	5.6	13.8	32	4.7	
Fluvisol ($n = 50$)	22.4	97	5.9	12.9	22	6.0	
Other $(n = 5)$	10.1	69	6.1	16.3	19	5.5	

表1 土壤特性值(幾何平均值) Table 1 Chemical properties of soil samples (Geometric mean)

3. 実験結果と考察

Niの K_d はAndosolが 2.7×10² - 1.1×10³ L/kg(GM: 5.7×10² L/kg), Cambisolが 1.2×10² - 3.8×10² L/kg(GM: 2.6×10² L/kg), Fluvisolが 1.4×10² - 1.3×10³ L/kg(GM: 5.2×10² L/kg)であ り(図 1), 土壌群による K_d の差はなかった(分散分析による)。一方土地利用毎では, 水田土壌が 2.0×10² - 2.9×10³ L/kg(GM: 6.1×10² L/kg), 畑土壌が 1.2×10² - 1.1×10³ L/kg (GM: 3.7×10² L/kg)であり(図 2), 土地利用により K_d に差が見られた(t検定)。しかしながら, 土壌群や土地利用による K_d の差の有無の要因について考察するには現状ではデータが十分ではない。一方で, K_d の土地利用差は土壌特性に影響を受けている可能性がある。そこで次に, K_d と各土壌特性との関係について検討するため, Pearsonの積率相関分析および Spearmanの順位相関分析を行った。両分析から得られた相関係数を**表 2**に示す。 K_d はpH

や電気伝導度,塩基置換容量との相関が低かった ことから,Niの土壌への収着メカニズムは単純な イオン交換反応だけではない可能性を示唆して いる。また他の土壌特性においてもK_dと高い相 関係数を示さなかった。今後はK_dデータを増や し,土壌群や土地利用毎,加えて他の土壌特性と の関係について検討する必要がある。

謝辞:本研究は,資源エネルギー庁放射線廃棄物共通 技術開発調査等委託費の予算により行われた。

表	2 K_dと各土壌特性との相関
Table	2 Correlation coefficients between

 K_{\perp} and each soil property

u	1 1 2				
上垴柱州	K _d				
上坡村住	[‡] R	$^{\dagger}R_{s}$	[§] p		
粘土含量	0.10	0.21	0.09		
電気伝導度	-0.22	-0.17	0.16		
pH	-0.06	-0.10	0.43		
塩基置換容量	0.43	0.28	0.03		
全炭素含量	0.31	0.31	0.01		
活性鉄含量	0.25	0.42	0.00		

[‡]R: Pearsonの相関係数

[†]R_s: Spearmanの順位相関係数

 $[§]p:R_op$ 値

Andosol Cambisol Fluvisol 図1 土壌群毎のK_dの範囲

