寒冷地で打設した流動化処理土の長期強度特性 Long-term strength on liquefied soil stabilization in cold ground

毛利栄征*、小野尚二**、中西浩輝**、〇清水和也***、真鍋拓吾**** Yoshiyuki Mouri*, Shoji Ono**, Hiroki Nakanishi**, Kazunari Shimizu***, Takua Manabe****

1. はじめに

大口径パイプラインの基礎材料として流動化処理土を用いると、締固めなどの工程がなく比較的均一な支持地盤が作製されるので、構造的には高い安全性を確保することができる。寒冷地のパイプライン工事に流動化処理土を適用する場合には、低温化での施工となるため、強度発現についての検証が必要である。本報では、気温が-5℃程度の低温下(北海道道央地区)で打設し、約1年経過した流動化処理土の強度特性について検討した。

2. 実験方法

実験は北海道夕張郡由仁町において 2008 年 $2/12\sim23$ の期間で実施した。流動化処理土の作製フローを図-1 に、実験ケースを表-1 に示す。

実験では、発生土を1次タンク(30m³ 水槽)に入れ加水した後にバックホウで撹拌し一次解泥を行った。次に、解泥した泥水をサンドポンプによって 5mm の振動ふるいを通し2次タンクに移した。2次タンク中ではサンドポンプによって、数時間撹拌を行った。泥水を十分に撹拌後、2次タンクから一定量をプラントに移し、固化材、水を加え所定配合に調整して流動化処理土を作製

化材、水を加え所定配合に調整して流動化処理した。作製後はポンプを用いて原地盤に掘削した実験ピットへ打設した。実験ピットは、幅1.5m 長さ1.5m 深さ1.5m とし5箇所設けた。実験ケースは、打設面をビニールシート、発泡スチロール5cm、30cm で被覆する養生方法の3ピットと打設厚を2倍の60cmにしたもの、

固化材の配合量を変えたもの各1ピットとした。

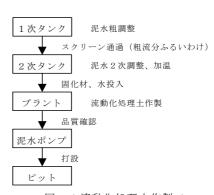


図-1流動化処理土作製フロー Flow of experiment

ケース	打設厚	養生条件等
A	30cm	ビニールシート
В	30cm	発泡スチロール 5cm
C	30cm	発泡スチロール 30cm
D	60cm	2層打設
E	30cm	配合変更

表-1 実験ケース List of tests.

*D,E についてはビニールシート養生

D、E のピットについては、初日に打設した A、B、C ピット 1 層目の効果が非常に良好であったため、一番簡易な養生であるビニールシート養生として打設した。

打設後 250 日程度経過後に各ピットから、コアサンプリングを行い長期強度の試験を実施した。

Department of Hokkaido Regional Development Bureau

^{*}独)農業・食品産業技術総合研究機構農村工学研究所 *National Institute for Rural Engineering **北海道開発局札幌開発建設部札幌南農業事務所 **Sappro Development and Construction

^{***}株式会社中研コンサルタント **CHUKEN CONSULTANT Co.,Ltd.

^{****}株式会社エステック *****Estec Co.,LTD キーワード:埋め戻し、流動化処理、強度

表-2 使用した土の性質 Soil properties

湿潤密度	1.770 g/cm ²
乾燥密度	1.288 g/cm ²
土粒子の密度	2.742 g/cm ²
自然含水比	37.4%
レキ分	10.7%
砂分	23.1%
シルト分	41.8%
粘土分	24.4%
液性限界	64.7%
塑性限界	27.6%
強熱減量	5.3%

3. 実験結果

実験には、現地のパイプライン工事で発生した土を使用した。使用した土の土質試験結果を表-2に示す。

発生土は、シルト分 41.8%、粘土分 24.4% と流動化処理土に適した粒度分布をした土 であった。

採取したコアの一軸圧縮試験結果を表-3および図-2に示す。図-2よりどのケースにおいても最下部の深度 1m 部分の強度が低くなっていた。これは、地盤からの水分の影響や、熱の発散による温度低下などが考えられる。含水比の結果からも最下部はやや含水比が高くなっていた。中間部分では配合が同じであるケース A~ケース

C はほとんど同じ強度となっており、長期材令では養生の影響は少ないと考えられる。

バッチごとの長期強度を表-4に示す。打設時に採取した供試体の結果も示している。供試体の材令 28 日と比較して各バッチとも平均値はほとんど同程度であった。

4. まとめ

表-3 各ケースの長期強度試験結果 Long-term strength of caseA~E

打設層	一軸圧縮試験結果(kPa)					
	ケースA	ケースB	ケースC	ケース D	ケース E	
4層目	711	764	523	659	160	
3層目	630	667	641	650	97	
2層目	701	617	645	691	235	
1層目	462	545	450	588	_	

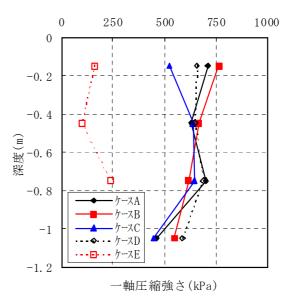


図-2 長期強度の深度分布 Long-team strength for Depth

表 - 4 混合バッチごとの長期強度 Long-term strength by composition

打設日	添加量 (kg/m³)	一軸圧縮強さ(kPa)					
		材齢	材齢	材齢	材齢約 300 日		
		3 目	7 目	28 目	平均	最大値	最小值
2月15日	100	104	191	494	486	614	398
2月16日	100	162	325	652	648	750	512
2月18日	75	102	204	294	235	284	207
	100	177	375	560	649	800	525
2月19日	50	55	73	111	97	107	84
2月20日	50	43	80	119	160	288	88
	100	137	280	490	666	911	453

寒冷地で流動化処理土の打設実験を行い300日程度の強度を測定したところ、初期は養生条件により強度差があったが、長期間養生すると初期の差は少なくなることが確認された。