# 耐震性を考慮したため池洪水吐の DEM 解析 DEM analyses for spillway on small earth dam

渡邊康治\*·河端俊典<sup>\*</sup>·○能祖玲子<sup>\*\*</sup>·泉明良<sup>\*</sup>·柏木歩<sup>\*</sup>·内田一徳<sup>\*</sup>・毛利栄征<sup>\*\*\*</sup> Koji WATANABE, Toshinori KAWABATA, Reiko NOUSO, Akira IZUMI, Ayumu KASHIWAGI, Kazunori UCHIDA and Yoshiyuki MOHRI

## <u>1. はじめに</u>

1995 年の兵庫県南部地震によって多くの 農業用ため池が被災した.被災状況から,た め池堤体と重量や剛性の異なる洪水吐が堤体 破壊の誘因となることが確認された.そこで 当研究室は耐震性を有するため池洪水吐を提 案した.既往の振動台実験から提案工法が耐 震性を保持していることを確認したが,その メカニズムについては十分検討できていない. そこで本研究では DEM (Distinct Element Method)解析から洪水吐の重量,剛性および断 面形状がため池の振動特性に与える影響を検 討した.

### 2. 解析概要

Fig.1 に DEM 解析のモデルを示す. Table1 に地盤モデルの物性値を示す.入力波は振動 台実験と同じ正弦波 5Hz, 20 波, 800gal とし た (Fig.2). DEM 解析における加振は入力加 速度に比例する慣性力を要素に作用させるこ とにより表現した. Table2 に解析ケースを示 す.矩形および半円形モデルに対してそれぞ れたわみ性と剛性のモデルを作製した.解析 条件として単位体積重量比  $\gamma_{ratio}$ (地盤の単位 体積重量に対する比)と洪水吐モデルの表面 摩擦角  $\phi$ を設定した.

### <u>3. 解析結果及び考察</u>

Fig.3 に洪水吐モデルの浮上量と単位体積 重量比の関係を示す.浮上量は加振ラスト0.5 秒間の鉛直変位の平均値とした.いずれのケ ースも γ ratio の増加とともに浮上量が減少し た.これは Fig.4 に示す加振後の変位量分布 (a),(b)から,洪水吐モデルの重量が増加する と洪水吐下部の地盤が拘束され,周辺地盤の まわり込みを防ぐためである.半円形モデル に関しては Fig.4(c)よりその形状ゆえに洪水 吐下部へ周辺地盤が滑り込んだため浮上量が 増加したと考えられる.

Fig.5 に洪水吐モデルの滑動量と単位体積 重量比の関係を示す.滑動量は水平変位波形



Fig.1 DEM 解析モデル DEM analysis model

**Table1** 地盤モデル物性値 Parameter of ground model

| 平均粒径 (m)                   | $6.00 \times 10^{-3}$ |  |  |
|----------------------------|-----------------------|--|--|
| 均等係数                       | 1.52                  |  |  |
| 土粒子密度 (kg/m <sup>3</sup> ) | $2.40 \times 10^{3}$  |  |  |
| 法線方向ばね係数 (N/m)             | $8.00 \times 10^{7}$  |  |  |
| 接線方向ばね係数 (N/m)             | $2.00 \times 10^{6}$  |  |  |
| 法線方向粘性係数 (N·sec./m)        | $7.34 \times 10^{2}$  |  |  |
| 接線方向粘性係数 (N·sec./m)        | $1.97 \times 10^{-2}$ |  |  |
| 粒子間摩擦角 (deg.)              | 24.0                  |  |  |
| 転がり摩擦角 (deg.)              | 24.0                  |  |  |
| 時間間隔 (sec.)                | $1.00 \times 10^{-6}$ |  |  |



Input wave (800gal)

**Table2**解析ケース

| Analysis cases                                |      |      |
|-----------------------------------------------|------|------|
|                                               | たわみ性 | 剛性   |
|                                               | 0.25 | 0.25 |
| 単位体積重量比                                       | 0.5  | 0.5  |
| $\gamma$ spillway                             | 1.0  | 1.0  |
| $\gamma ratio = \frac{\gamma}{\gamma ground}$ | 2.5  | 2.5  |
| $(\phi = 0 \text{ deg.})$                     | 10   | 10   |
| 表面摩擦角                                         | 0    | 0    |
| $\phi$ (deg.)                                 | 10   | 10   |
| $(\gamma_{ratio}=0.5)$                        | 24   | 24   |

<sup>\*</sup>神戸大学大学院農学研究科 Graduate School of Agricultural Science, Kobe University <sup>\*\*</sup>神戸大学農 学部 Faculty of Agricultural Science, Kobe University <sup>\*\*\*</sup>農村工学研究所 National institute for Rural Enginnering キーワード:数値解析・ため池・洪水吐



**Fig.3** 浮上量と単位体積重量比の関係 Relationship between lateral movements to ratio of unit weight

3~4 秒の平均値とした. 矩形モデルに関してた わみ性および剛性モデルともに y ratio=0.5~1.0 付近で滑動量が最も小さくなった. Fig.6 に示す 矩形洪水吐と左右の周辺地盤の水平変位波形か ら, y ratio=10 と比べて y ratio=0.5 では洪水吐 モデルと周辺地盤との間に位相差がみられない. よって矩形モデルは周辺地盤の挙動に追従した 結果,周辺地盤を破壊することなく減衰したと 言える.

一方 Fig.5 より,半円形モデルはγ ratio=1.0 で滑動量が最大となり,矩形モデルとは逆の傾 向を示した. Fig.7 に示す半円形モデルの時間経 過に伴う水平変位と鉛直変位の関係より,加振 初期においてモデルは急激に浮上しながら左右 に大きく振られた結果,滑動量が最も大きくな ったと考えられる.

### 4. 結論

洪水吐の重量,剛性,断面形状がため池の耐 震性に与える影響を検討するために DEM 解析 を行なった.その結果,以下の知見が得られた.

- ・洪水吐の重量が増加すると浮上量は減少する 一方で,滑動量は増加する.
- ・剛性に比べてたわみ性は滑動量を減少させた.
- ・半円形に比べて矩形は浮上量・滑動量ともに 減少した.

よって,洪水吐と周辺地盤の比重が同等のた わみ性矩形モデルに浮上対策を講じることによ り,高い耐震性を有する洪水吐になると推察さ れる.実際,浮上対策としてジオグリッドで補 強した洪水吐の有効性は振動台実験で検証済み である.

参考文献; 1) Kawabata,T, Uchida,K., Kitano,T., Watanabe,K. and Mohri,Y. (2007.11): Shaking table test for lightweight spillway with geogrid, New Horizon in Earth Reinforcement, Proceedings of the 5th International Symposium on Earth Reinforcement, Taylor & Francis /Balkema, pp.837-841



Relationship between vertical movements to ratio of unit weight



Fig.6 洪水吐と左右地盤の水平変位 Lateral movement of Spillway and right and left ground



Fig.7 水平変位と鉛直変位の関係 Relationship between lateral movements to vertical movements