マイクロ 水力発電 における 螺旋水車 の設置法に関する研究 Setting of Spiral Water Mill in Micro Hydro－power

○大江慎哉＊，小林晃＊
OS．Ooe and A．Kobayasi

1．はじめに

マイクロ 水力発電 の中でもより 低流量低落差にて適用できるとされる水車として螺旋水車が注目されている。しかし未だにその動力特性の理論的解明がなされていない。

本研究では軸を傾け，水流に対し角度を持 たせて設置することで， 2 重目以降の羽根に もより的確に動力を作用させることを考え， その最適な角度に関して検討を行った。

2．三種の傾き角度の提案

2．1．抵抗面を考慮した場合
図1（a）は回転軸を水流に対し鉛直に置い た螺旋水車を正面から見た図である。紙面鉛直方向から水が流れる場合，軸を中心に右側 は運動エネルギーを反回転方向に受ける。こ の軸を紙面奥側に傾けることで抵抗面積を減 らした様子が図1（b）に示される。このとき の傾きを θ_{1} と定義する。 θ_{1} は，図 1 （c）の ように考えることで求めることができる。こ のとき P はピッチ（羽が一周するらちに 軸方向にすすむ距離），r は半径である。

$$
\begin{equation*}
\tan \theta_{1}=\frac{p}{4 r} \tag{1}
\end{equation*}
$$

2．2．負荷面積を考慮した場合

図1（b）から更に軸を紙面奥側に傾けるこ とで負荷面積を増加させることを考える。図 1（d）に示すように正面の羽の端とその正反対側の羽の端が水平となるようにすれば，紙面垂直方向から見える羽根の面積は極力大き くなる。このときの傾きを θ_{2} と定義する。 θ 2に関しては図1（e）から次式（2）が成立する。 $\tan \theta_{2}=\frac{3 p}{4 r}$

2．3．円盤による簡易モデル

螺旋水車を図1（e）のように傾けた場合の作用面積を正確に求めることは困難なので，図1（f）に示すような円盤の連なりに螺旋面 と見立てて簡易化したモデルを考える。円の半径を r ，ピッチを P ，枚数を N ，傾きを θ ，面積をS とおくと，次式（3）が成立する。面積 Sが最大となる傾きを θ_{3} と定義する。

$$
\begin{aligned}
S= & N \pi r^{2}-2(N-1) r^{2}\left\{\frac{\pi \sin \theta}{2}-\sin \theta \sin ^{-1}\left(\frac{P \cos \theta}{2 r \sin \theta}\right)\right\} \\
& +2(N-1) \frac{p \cos \theta}{4 \sin \theta} \sqrt{(2 r \sin \theta)^{2}-(P \cos \theta)^{2}}
\end{aligned}
$$

図1（a）

図 1 （d）

目（b）

図 1 （e）

図1（f）

図 1 ：螺旋水車の軸の傾き角の考え方
Ideas of inclination of axis of spiral water mill
（a）：水流に対し鉛直に置いた螺旋水車
（b）：軸を紙面奥側に傾けた螺旋水車（ θ_{1} ）
（c）：θ_{1} の詳細図
（d）：軸をさらに傾けた螺旋水車（ θ_{2} ）
（e）：θ_{2} の詳細図
（f）：円板による螺旋水車の簡易モデル

[^0]
3．室内実験

室内で $1 / 10$ 型模型実験を行った。
半径 $\mathrm{r}=3 \mathrm{~cm}$ ，ピッチ $\mathrm{P}=2.25 \mathrm{~cm}$ と設定し螺旋水車の模型を三体作製した。 P / r 比は実存し得る螺旋水車から推測した。このとき各傾き角度は表1に示すとおりである 。水車模型は アクリル 中空棒の回りにアクリル 板で作成し た羽を取り付け，角度の固定された木片に取 り付けたものである ．また片面がアクリル板 で他面が木板で構成される $25 \times 15 \times 160 \mathrm{~cm}$ の水路を作成し，流速 $0.142 \mathrm{~m} / \mathrm{s}$ とし，それぞれ の角度において三体の模型の1分間の回転数 を計測した。図 7 に螺旋水車の模型の様子を，図 8 に水路の様子を，表2に計測結果を示す。

図7：螺旋水車の模型
Model of spiral water mill

図 8：水路
Waterway

表 $1: ~ \mathrm{P} / \mathrm{r}=0.75$ 時における 各傾き角度
Each inclination degree at $\mathrm{P} / \mathrm{r}=0.75$

	$\theta_{1}\left({ }^{\circ}\right)$	θ_{2}	θ_{3}
$\mathrm{P} / \mathrm{r}=0.75$	$10.6\left({ }^{\circ}\right)$	29.4	20.6

表 $2: 3$ 模型の 1 分当り回転数の平均値（rpm）
Average rotational numbers of one minute of three models when each angle is inclined（rpm）

	1 号機	2 号機	3 号機
$0\left(^{\circ}\right)$	$4.4(\mathrm{rpm})$	5.0	3.2
10	30.6	31.0	27.2
20	39.0	40.2	37.8
30	48.8	46.8	44.2
40	40.2	39.4	38.6
50	32.4	31.8	29.6
60	26.4	25.6	24.8
70	22.6	20.6	19.6
80	19.0	17.2	15.8
90	14.8	13.0	12.2

4．考察

P / r 比 $=0.75$ の時，表 1 より各傾きは $\theta_{1}=10.6^{\circ}, \theta_{2}=29.4^{\circ}, \theta_{3}=20.6^{\circ}$ である。 それぞれ $\theta_{1} \fallingdotseq 10^{\circ}, ~ \theta_{2} \fallingdotseq 30^{\circ}, ~ \theta_{3} \doteqdot 20^{\circ}$ と近似して考えると，表2より回転数は θ_{2} に近い値で最大となることが分かる。

また既往の研究 ${ }^{1)}$ をもとに， $\mathrm{P} / \mathrm{r}=0.75$ の時半径 $\mathrm{r}=0.1$（m），0．2， 0.3 において流速 $1 \mathrm{~m} / \mathrm{s}$ の水流が螺旋水車に与える付加（kN）を計算 した。表3に結果を示す。表3より，羽根に かかる作用力は θ_{3} の時に最大値を得ること が分かる。

計測結果と計算結果の違いは，回転には羽 への作用力だけでなく，回転し易さ等といっ た他の要素が影響するためであると 考えられ る。特に一重目の羽と流水との接点が回転に影響を及ぼすようである。

表 3：計算結果
Numerical result

	$\theta_{1}\left({ }^{\circ}\right)$	θ_{2}	θ_{3}
半径 $\mathrm{r}=0.1(\mathrm{~m})$	$1.81(\mathrm{kN})$	1.80	1.86
半径 $\mathrm{r}=0.2$	10.98	10.97	11.32
半径 $\mathrm{r}=0.3$	21.55	28.03	31.18

本研究により，螺旋水車の軸を水流に対し θ_{2} だけ傾けて設置した場合に最も螺旋水車 が回転するという 結果が得られた。

ただ実験の過程において，水路幅が狭いほ どより回転しやすい様子が観察された。これ は，水流が螺旋水車を避けて流れていること を表しており，今後は螺旋水車の形状，設置法に加えて導水法についても研究する必要が ある。また低トルク 低回転数でも効率の高い発電機の開発も重要である。
参考文献

1）大江慎哉： | |
| :---: |
| 下ククロ水力発電における螺旋 |水車の挙動解析 に関する研究」，農業農村工学会， 2008

2）新エネルギー・産業技術総合開発機構 ：マ イクロ 水力発電導入 ガイドブック，2003

[^0]: ＊京都大学 Kyoto University マイクロ水力発電，螺旋水車，設置法，数値解析

