カラムを用いた浸透実験における土壌中の CO₂ガス挙動 Column measurement on behavior of soil carbon dioxide gas under infiltration experiment

○菅野祐一郎* 高松利恵子* 田中勝千* 藤川智紀** 井本博美*** KANNO Yuichiro, TAKAMATSU Rieko, TANAKA Katsuyuki, FUJIKAWA Tomonori, IMOTO Hiromi

1. はじめに

近年,地球温暖化の原因物質である二酸化炭素(CO₂)の吸収源として農地土壌が注目さ れており,農地土壌における CO₂の放出・吸収量の解明のためには,土壌中における CO₂ ガス挙動を把握することが重要である.採草地はルートマットやその直下の緻密化した層 (以下,高密度層)がみられる特徴的な土壌構造を有し,降雨により供給された土壌水の浸 潤に伴いこの高密度層において土壌中の CO₂ ガス濃度が増加あるいは減少することが観 測された(内田ら, 2008).土壌水分の変化が土壌中の CO₂ ガス挙動に与える影響は、必ず しも同様な現象によって生じるものではなかった.土壌中の初期水分状態や降雨強度によ って,土壌水の浸潤過程における土壌 CO₂ ガス挙動は異なる変化を示す.本研究では、こ れまでに採草地の土壌構造を模した室内カラム実験におい土壌水分の変化によるガス濃 度変化の一部を再現した.しかし、これは土壌水の浸透量を強降雨とした一定条件のもの であり、土壌水が土壌 CO₂ ガス挙動に与える影響を広範囲な条件で評価したものとは言え ない.そこで本研究では採草地でみられた特徴的な土壌構造を模した土壌カラムを用いて、 土壌カラムへの給水量を様々に変化させることで、土壌水の浸透量が土壌中の CO₂ ガス挙 動に与える影響を明らかにすることとした.

2. 実験

青森県十和田市に位置する北里大学獣医学部附属フィールドサイエンスセンター(FSC)の採草地における深さ5~30 cmまでの撹乱土をアクリル製の円筒カラムに充填した(Fig.1).採草地でみられた特徴的な土壤構造を模し,6~15 cmを高密度層として乾燥密度 0.90 g cm⁻³,それ以外の層を 0.75 g cm⁻³となるように充填した.土壌カラム内を飽和後,カラム底面より地下水位 80 cmに設定し,排水が生じなくなった時点から,各深さに埋設したガス採取管から土壌ガスを採取した.その後,土壌カラム表層へと降雨とみなしたイオン交換水を供給し,3 時間および 6 時間間隔で土壌ガス濃度を測定した.実験1(浸透量:多)では降水量 30 mm 相当の 190 ml のイオ

^{*}北里大学獣医学部 School of Veterinary Medicine, Kitasato University, **東京農業大学地域環境 科学部 Faculty of Regional Environmental Science, Tokyo University of Agriculture, ***東京大 学院農学生命科学研究科 Graduate School of Agricultural and Life Science, The University of Tokyo

土壌 CO2 ガス挙動,土壌水,浸潤過程

ン交換水を,実験 2(浸透量:少)では降水量 15 mm 相当の 95 ml のイオン交換水を給水した.採取したガス試料は,TCD 付ガスクロマトグラフ(Agilent Technologies 社)を用いて CO₂ガス濃度を分析した.また,土壌水分の時間変化を捉えるため,土壌水分圧力センサを各深さに埋設した.これら実験は恒温室内(20±1 $^{\circ}$)で行なった.

3. 結果

Fig.2 に実験 1(浸透量:多)および実験 2(浸透量:少)における土壌 CO₂ガス濃度と土壌 水分量の経時変化を示した.実験 1(Fig.2(a))および実験 2(Fig.2(b))において,高密度層(深 さ 10.5 cm)における土壌 CO₂ガス濃度は給水直後に一時的に減少した.この要因として, 給水直後では高密度層が飽和状態にあったことから,下層からのガス移動の阻害および土 壌微生物からの呼吸作用が抑制されたためと考えた.その後,排水がすすみ体積含水率が 給水前(定常状態)の値へと近づくにつれ,実験 1 では土壌 CO₂ガス濃度も給水前のガス濃 度へと近づいていった.しかし,実験 2 では排水に伴い,土壌 CO₂ガス濃度はわずかでは あるが増加し続けた.これは,実験 1 よりも浸透量が少ないため排水が速やかに進み,下 層からのガス移動の阻害による影響が弱まることで,高密度層以深で蓄積された土壌 CO₂ ガスが上層へと拡散移動したためと考えた.また,高密度層以深(深さ 15 cm以深)における 土壌 CO₂ガス濃度は,給水後では同様に増加したが,排水後期において異なる変化を示し

た. この要因として、ガス 移動の阻害,土壌微生物の 活性化が考えられた.実験 1 では、排水後においても ガス濃度がわずかに増加し 続けた.一方,実験2では 排水後にガス濃度は徐々に 減少した.これは、排水に 伴い上層への拡散阻害によ る影響が弱まることで, 高 密度層以深の土壌 CO2 ガ スが上層へと拡散移動した ためと考えた.しかし,実 験1では排水後にもガス濃 度が増加し続けていたこと から、拡散阻害による影響 のみならず, 土壌微生物の 呼吸が活性化していると考 えた.

4. まとめ

浸透量の違いにより,排
水過程における土壌 CO2
ガス挙動が異なることが示
唆された.

Fig.2 土壌 CO₂ガス濃度と土壌水分の経時変化 Temporal changes in soil CO₂ concentration and soil moisture