粒子フィルタによる実地盤挙動のデータ同化 Data assimilation for actual ground performance using the particle filter

○村上 章*, 片岡資晴*, 珠玖隆行**, 西村伸一***, 藤澤和謙***, 中村和幸**** A. Murakami, M. Kataoka, T. Shuku, S. Nishimura, K. Fujisawa, K. Nakamura

1. はじめに

「データ同化」¹⁾とは、観測値を数値シミュレーションモデルに取り入れるこ とで、一時刻先の精度を向上させたり、観測とシミュレーションの差を生む原 因と思われるモデル中のパラメータを観測中に修正する手法を言う。後者はい わゆる逆解析である。この手段にはカルマンフィルタやそれを発展させた各種 フィルタがある。著者らは、これらのうち粒子フィルタ(PF)が地盤挙動に対 する弾塑性パラメータの同定に有効であることを示した²⁾。本文では、神戸空 港島護岸建設工事に伴う基礎地盤の変形挙動観測データ^{3),4)}、特に沈下挙動観測 結果に基づいて PF と水~土連成有限要素解析によるデータ同化を行った。

2. PFと地盤/シミュレーションモデル

PF において、変位、間隙水位、同定す るパラメータを含む状態変数 x_k の確率密 度関数は多数の離散サンプル(粒子)から 成る実現値集合(アンサンブル)により近 似される。ここでは、PF のうちでも尤度 計算のみを行い、初期に作成した粒子を継 続的に使うアルゴリズム (Sequential Importance Sampling: SIS)⁵⁾による(図 1)。

図2に地盤構成を示す。海底面から厚さ約 33m にわたり分布する軟弱粘性土層に打

設されたサンドドレーン(SD)による改 良域を一つの層とみなし、荷重条件、排水 条件、応力状態など、SDの打設により複 雑となった地盤条件をすべて包括した地 盤定数(マスパラメータ)の同定を試みた。

数値シミュレーションモデルとして、 Cam clay モデルを用いた水~土連成有限

図 2 神戸港沖海底地盤の地盤構成^{3),4)}

要素解析を採用した。使用するデータ同化手法(PFと有限要素モデルの連成) では、弾塑性構成モデルや有限要素モデル(プログラム)に制約がなく、それ ぞれが独立するという利点を有している。

*京都大学大学院 Kyoto University **㈱大本組 Ohmotogumi, Co. Ltd. ***岡山大学大学院 Okayama University ****明治大学 Meiji University データ同化,観測値,有限要素法

3. PF の 適 用

同定するパラメータとして、圧縮指数 λ と 透水係数kを選定した。粒子数は200組とし、 表1に示す範囲で一様乱数により作成した。 比較のため、限界状態応力比Mと透水係数kを同定対象とした解析も実施した。観測デ ータとして、海底面の沈下量(観測点 3BC-1, 3BC-2, 3BC-4, KC-5の計4点)を用い、観測 点数の違いがパラメータ同定結果に及ぼす 影響を検討した。実測値の最大沈下量に対 して 10%, 20%, 30%の偏差 σ を考え、分散 σ ² を設定し、分散の違いがデータ同化結果に 及ぼす影響についても検討した(表 2)。

λと k のパラメータ同定において、OP-2
(3BC-2, 4), OP-4 (全観測点)の同定パラ
メータ経時変化はλ, k のいずれも同様の傾向を示し、最終的な同定パラメータもほぼ
同じ値を示した。分散の違いにより同定パ

ラメータの経時変化に大きな違いが 認められるが、最終的な同定パラメー タはほぼ同じ値を示す。

同定パラメータとしてλと k を用い た解析では、データ同化に用いる観測 点数の増加に伴い、沈下挙動の予測能 力が向上した。とくに、3BC-2,4では 実測値と解析結果がよく一致し、PF により同定されたパラメータを用い ることにより、実地盤の沈下挙動を精

表1 サンプルの発生範囲

Range of value		
for particle generation		
$0.30 \leq \lambda \leq 0.60$		
$0.80 \leq M \leq 1.40$		
$1 \times 10^{-0} \leq k \leq 1 \times 10^{-3}$		

表 2 データ同化の実施ケース

Case	Target	Observation	Variance
	parameters	data	σ
1	λ , k	O P - 1	$(0.2S)^2$
2	λ , k	O P - 2	$(0.2S)^2$
3	λ, k	O P - 4	$(0.2S)^2$
4	λ, k	O P - 4	$(0.1S)^2$
5	λ, k	O P - 4	$(0.3S)^2$
6	M, <i>k</i>	O P - 1	$(0.2S)^2$
7	M, <i>k</i>	O P - 2	$(0.2S)^2$
8	M, <i>k</i>	O P - 4	$(0.2S)^2$
9	M, <i>k</i>	O P - 4	$(0.1S)^2$
10	M, <i>k</i>	O P - 4	$(0.3S)^2$

図3同定パラメータを用いた解析結果

度良くシミュレートできることがわかる(図3:456日観測時点でのパラメータ による)。一方、同定パラメータとしてMと k を用いた解析では、用いる観測点 の違いによらず、ほぼ同様の予測結果を示した。Mについて、ここで対象とした 沈下挙動に及ぼす影響は比較的小さく、沈下挙動予測にはλの同定が有効である。 各時刻における同定パラメータを用いた解析では、時間経過によらず同定パラ メータの実地盤挙動の予測能力は同程度であった。101日経過時点で同定された パラメータを用いたとしても、比較的高い精度で長期の沈下挙動が予測できる ものと期待される。

■参考文献 1) 中村和幸ら:データ同化:その概念と計算アルゴリズム,統計数理, 53(2):211-229, 2005.2) 村上 章ら:粒子フィルタによる地盤解析のデータ同化,応用力学論文集, 12:99-105, 2009.3) 神戸空港変 形解析検討会:神戸空港変形解析報告書:1-60, 2003.4) 長谷川憲孝ら:神戸空港海底地盤における沖積層の 圧密特性,土木学会論文集 C, 63(4):923-935, 2007.5) Doucet, A., Godsill, S. and Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering, *Statistics and Computing*, 10: 197-208, 2000.