個別要素法による土の破壊基準モデル化のための数値実験 Numerical study for modeling a failure criterion of soil in DEM

○福元 豊*・村上貴志**・村上 章*Yutaka Fukumoto, Takashi Murakami, Akira Murakami

<u>1.はじめに</u>

本稿では通常のDEMに、粒子間ボンド、および転がり抵抗モデルをそれぞれ導入することで¹⁾、 粒子接触モデルを改良した。その際これらモデルを同時に用いる上での問題点を改善するために、 モデルを修正した。これらのモデルを反映させた DEM により一面せん断シミュレーションを行い、 その結果から、DEM において粘着力・内部摩擦角によって定まる地盤の破壊基準を適切に表現で きる可能性について検討した。

2. 粒子間の固着

粒子間の固着をモデル化し粒子集合体としての 粘着力を発現させるために、Nova らのボンドモデ μ^{2} を導入した。従来定義では c_{μ} (N)を入力パラメ ータとして粒子間の固着を表現しているが、 c_{μ} は応

力表示ではないため粒子の大きさに応じた固着力が働かない。また、そもそも粒子集合体としての粘着力は t_{μ} によって発現すると考えられるため、 t_{μ} の値が粒子間摩擦角 $\varphi_{\mu}(^{\circ})$ に大きく依存して決定される状況を改善する必要もある。よって本文ではNovaらのボンドモデルを修正し、 $t_{\mu}=(r_{A}+r_{B})$ t'_{μ} で定義する t'_{μ} (kN/m)を修正後の入力パラメータとした。 r_{A} , r_{B} (mm)は粒子半径である。

<u>3. 転がり抵抗³⁾</u>

円形粒子を用いたまま粒子集合体としての大きな摩擦角を得るために、転がり抵抗を導入した。転がり抵抗モーメント*M*,を

場合は転がり抵抗を考慮しないとしているが、これは粒子同士が 接触していない場合に M_r を作用させないためである。しかし、 本文のようにボンドモデルと併用する場合、 F^n が引張方向に作 用している時 (t_μ の範囲内)でも粒子同士が固着している。よっ て、この場合も粒子の回転に対して転がり抵抗を考慮する必要が ある。修正後は、ボンドが作用している場合の t_μ (N)を粒子間の 圧縮方向に働いている固着力と考えることで、 $F^n \leftarrow F^n + t_\mu$ と 置き換えて計算した。なお、修正の前後ともに入力パラメータは 図中の b である。

a contact bond model suggested by Nova

作用させることで、粒子の回転を抑制している。ここで、従来定義では Fⁿが引張方向に作用する

*京都大学大学院 Kyoto University **(株) サノヤス・ヒシノ明昌 Sanoyasu Hishino Meisho, Co. 個別要素法、クーロンの破壊基準、一面せん断試験

4. 一面せん断シミュレーション

本文では、2次元の定圧条件で2通りの一面せん断シミュレーションを行った。両方のモデル修正 前をケース A、修正後をケース B とする。 減衰には local damping を用いた。 粒度分布は Zhang ら⁴⁾ と同じ粒度分布(図3)を、Novaらの検討と同じ粒径幅になるように 50 倍にスケールアップした ものを用いた。せん断箱の大きさは 315mm、高さは 140mm とし、この領域内に bottom-to-top

子配置を行った。配置された粒子数は 4820 個である。せん断変位速度は 1.25%/sec とし、 せん断長さは 32mm と した。ケース B の t' "の値はケース A の各 c "の値に相当するようにした。 5. シミュレーション結果

reconstruction アルゴリズム⁵⁾により粒

図 4.5 は DEM パラメータと粘着力・ 内部摩擦角との相関関係を示した散布 図行列である。まず、転がり抵抗に関

する係数 $b \ge \varphi_d$ の関係に注目すると、b=0.10付近で φ_d がピ ークを迎えた。これは、bの増加とともにQaも増加するとし ている既往の研究^{の,7)}とは異なる結果である。また、転がり 抵抗をモデル修正した効果がほとんど現れなかった。これら の原因は 2 次元一面せん断試験という粒子自由度の非常に 低い条件が関係していると考えられる。既往の研究では、よ り粒子自由度の高い 2 次元二軸圧縮試験やねじりせん断試 験で検討している。一方、 $t'_{\mu} \sim c_d$ の相関関係は $c_{\mu} \sim c_d$ のそ れと同じような結果となり、ボンドモデル修正効果がほとん ど見られなかった。この原因としては、解析に用いた粒度分 布の粒径幅が小さいことが考えられる。よって、より粒度 分布の良い粒子を用いて再検討することでモデル修正の効 果を確認できる可能性がある。今回の検討で得られたod は 最大のもので 25°程度であり、工学的対象となる範囲の地 盤の破壊基準を表現できたとはいえない。異なる試験法や 異なる条件下での解析を進める必要がある。

表1 パラメータ一覧 parameters i	used in	simulation A, B
-------------------------	---------	-----------------

パラメータ		ケースA	ケース B	
固定	粒子密度(kg/m ³)	2400		
	法線方向ばね係数(kN/m)	$4.00{ imes}10^4$		
	接線方向ばね係数(kN/m)	$1.44{\times}10^{4}$		
	local damping 係数	0.2		
	時間ステップ(sec)	5.0×10 ⁻⁶		
変化	粒子間摩擦角(°)	5.0, 15.0, 30.0, 45.0		
	$c_{\mu}(N) / t'_{\mu}(kN/m)$	0, 50, 100, 200	0, 30, 60, 120	
	転がり抵抗に関する係数	0.00, 0.10, 0.25, 0.50, 1.00		
	垂直力(kN/m ²)	50, 100, 200		

scatter diagram matrix in case B

素法による粒子間の転がり抵抗が粒状体の内部摩擦角におよぼす影響の検討,第32回地盤工学研究発表会, pp.497-498, 1997.

[■]参考文献 1) 村上貴志・村上 章・阪口 秀:一面せん断強度に対する個 別要素法パラメータの同定,応用力学論文集, Vol. 12, pp.533-540, 2009. 2) Utili, S. and Nova, R.: DEM analysis of bonded granular geomaterials, International Journal for Numerical and Analytical Methods in Géomechanics, Vol.32, pp.1997-2031, 2008. 3) 阪口 秀:粒子形状と転がり抵抗の影響,土の構造とメカニックス-ミク ロからマクロヘ-, 土と基礎, Vol.50, No.11, pp.53-54, 2002. 4) Zhang, L. and Thornton, C. : A numerical examination of the direct shear test, Géotechnique, 57(4), pp.343-354, 2007. 5) Poschel, T. and Schwager, T. : Bottom-to-Top Reconstruction, Computational Granular Dynamics, pp.271-291, 2005. 6) 中瀬 仁・本田 中・西 野隆之:個別要素法摩擦パラメータを設定するためのねじりせん断シミュレー ション,第36回地盤工学研究発表会,pp.503-504,2001.7)山本修一:個別要