水田湛水中における亜鉛の形態分析 Examination of Zinc Fractionation on Ponded Water in a Paddy Field

○人見忠良, 白谷栄作, 濵田康治 HITOMI Tadayoshi, SHIRATANI Eisaku, HAMADA Koji

<u>1. はじめに</u>

水田における重金属の動態は、営農活動に伴う水移動および土壌条件への人為的介入に よって影響されると想定される.一方、環境水中の重金属の毒性は、その存在形態によっ て大きく異なり、亜鉛(Zn)はフリーイオンの状態では水生生物に対して強い毒性を示し、 錯体の形成や懸濁物質への吸着によって、その毒性が弱められることが報告されている¹⁾. 本報では低濃度で水生生物に毒性を示し、環境基準項目に指定されている Zn を対象物質 として、水田湛水中の形態分析、およびその移動量にかかる調査結果を報告する.

2. 現地調査概要

霞ヶ浦沿岸に位置する面積 30 a の単位水田圃場において灌漑期間(2010/4/30~2010/8/29) の現地観測を実施した. 圃場への灌漑水は, 農地排水と霞ヶ浦の水との混合水が揚水機場 を通して管路で供給される. 灌漑水量および表面排水量は, それぞれ水口および水尻に設 置した三角せきによって測定した. 降水量は試験圃場近傍のアメダス観測所(土浦)のデ ータから推定した. 灌漑水および田面水を灌漑初期は高頻度で,移植後は1週間に1回の 頻度でサンプリングし,実験室内で後述する形態分別法による前処理を行い, Zn 濃度を誘 導結合プラズマ質量分析装置(ICP-MS; PerkinElmer Inc., ELAN DRC-II)で定量した.

3. 重金属の形態分別法

Zn の形態分析のための前処理として,図1に示す形態分別法を採用した.サンプルを PTFE メンブレン(ADVANTEC H050A047A)でろ過し,さらに,このろ液中のフリーイオ ンをキレートディスクカートリッジ(エムポア™)で回収した.サンプル原水をマイクロ

ウェーブ前処理装置(Milestone General K.K., Ethos TC)で加圧式酸分解した試料, PTFE メンブレンを通したろ液,およびキ レートディスクカートリッジによる抽出液 の定量値を,それぞれ全量画分濃度,溶存 態画分濃度,およびフリーイオン画分濃度 とした.なお,溶存態画分およびフリーイ オン画分の試料に対しては前処理として分 解処理を行わず,0.1 ~ 0.2 Mの硝酸酸性 に調整するのみとした.懸濁態画分濃度は 全量画分濃度と溶存態画分濃度の差から, 非フリーイオン溶存態画分濃度は溶存態画 分濃度とフリーイオン画分濃度の差から計 算した.

図1 重金属の形態分別法 Process of heavy metal fractionation

農研機構 農村工学研究所 National Institute for Rural Engineering, NARO キーワード:形態分別,田面水,代かき濁水

4. 調査結果および考察

調査期間の灌漑水量は 962 mm, 降 水量は 395 mm, 表面排水量は 444 mm であった(図2).表面排水は灌漑水 が連続的に供給され、 梅雨の時期でも ある6月中旬から7月中旬にかけて集 中的に発生した.

灌漑水では懸濁態画分濃度は 6.7 ~ 11.9 ug/L, 非フリーイオン溶存態画分 濃度は 0.0 ~ 0.7 µg/L, フリーイオン 画分濃度は 0.8 ~ 3.2 μg/L であった (図3).田面水では懸濁熊画分濃度 は 2.2 ~ 177 µg/L, 非フリーイオン溶 存態画分濃度は 0.0 ~ 3.1 µg/L, フリ ーイオン画分濃度は 0.8 ~ 3.4 µg/L で あった(図4). 懸濁態画分濃度の全 量画分濃度に占める割合は平均すると 灌漑水では 83%,田面水では 80%であ り. ほとんどの期間で懸濁熊画分が主 要な画分であった. "5/16 16:20"およ び"5/1915:00"は、それぞれ代かき直 後および移植直後のサンプルであり、 懸濁熊画分濃度が直前のサンプルから 24 倍および 11 倍に上昇した. 代かき 濁水等の流出は水田からの Zn の排出 負荷量を著しく増大させると考えられ る.一方,代かきや移植の影響を受け ない期間では,田面水の懸濁態画分お よびフリーイオン画分の濃度は灌漑水 に比較して低い傾向を示した. このた め, これらの画分の灌漑期間の表面排 水負荷量は灌漑負荷量に比較して、水 量の減少比率以上に減少した(表1). 田面水の Zn 濃度の大きな変化は灌漑 初期の短期的な懸濁熊画分濃度の上昇 のみであり,水田湛水面の流下過程に おける Zn による水生生物への直接的 有害性の付加は小さいと考えられる.

5/12 22 6/1 /22 71 6/11 21 711 21 7/31 田面水における形態別 Zn の濃度変化 図 4 Time changes of concentration of each Zn fractionation in ponded water

8/10

表 1	灌漑期間の	D形態別 Z	n の負荷量	l
Loads of eac	h Zn fracti	onation for	irrigation	period

	Zn load (g/ha)				
	Total	Particulate	Dissolved non-free ion	Free ion	
Irrigation	113.4	92.2	3.6	17.6	
Surface drainage	42.0	33.4	2.9	5.7	

参考文献

1) J. W. Rijstenbil and T. C. Poortvliet (1992) Copper and Zinc in Estuarine Water: Chemical Speciation in relation to Bioavailability to the Marine Planktonic Diatom Ditylum Brightwellii, Environmental Toxicology and Chemistry, 11, 1615-1625.

10 0