水田水域におけるアメリカザリガニの越冬期の生態明解および駆除対策の検討

A study on population dynamics and extermination measures of *Procambarus clarkii* in paddy waters in wintering season

○青木俊輔*, 水谷正一**, 後藤章**
AOKI Syunsuke*, MIZUTANI Masakazu**, GOTO Akira**

1. 研究の背景および目的

アメリカザリガニ（*Procambarus clarkii* Girard, 1852）は北アメリカ大陸南部を原産とするザリガニの仲間である。外来種である本種は日本各地で様々な問題を引き起こすことが知られ1）、外来生物法により要注例外来生物に指定されている2）。水田水域において本種を取り扱っている従来の研究は少ないため、水田環境における詳しい生態についての知見は少なく、被害実態についても不明な点が多い。本研究では日本の大田水田環境において本種が引き起こすとされる諸問題を解決するため本種の駆除対策を検討することとし、特に知見の少ない越冬期に着目し駆除方法の検討および生態の明解することを目的とした。

2. 研究の方法

2.1 越冬期調査

調査対象地
栃木県上三川町五分一の水田排水路を対象地とした（Table1）。2面水路が3枚の水田に隣接して流れており、そのうち上流側の2枚（水田A、B）は20年以上有機農法による栽培が行われており、下流側の1枚（水田C）では慣行農法による稲作が行われおり...
のか実験で把握を試みた。実験方法：ビーカーに熱湯を入れ、温度計を見ながら水温を調整した後に実験個体を熱湯内に全身が浸るように投入した。投入から一定時間後に熱湯から取り出し、直ちに水を入れた水槽内に移し様子を観察した。その後、水槽に入れたまま1日おきに再び様子を観察した（Table 3）。この際刺激を与え反応しない状態を死亡、生存はしているが反転したまま正常の体勢に戻れない状態を回復不能な障害と判断した。

3. 結果および考察

棲みの分布：調査対象水路内の96箇所の掘削穴およびチムニーを確認した（Table 4）。棲みのほとんどは有機農法が行われている水田A、Bに隣接する区間に分布しており、慣行農法が行われている水田Cに隣接する区間にほとんど見られなかった（Fig. 1）。有機農法区間では夏季に水草が多く存在したことが影響していると考えられる。採捕調査：5月12日の採捕調査では8区間で56尾、5月19日に採捕調査では40尾を採捕し、その内訳のうち個体数が8尾であった。個体数の推定：Petersen法の式に標準採捕の結果を適用し水路全長での越冬個体数の推定を行った結果N（個体数）=250、V（標準偏差）=52.5となり、目視による棲みの確認数の3倍に近い約200〜300尾が越冬していたという推測に至った。高温耐性実験：10秒の負荷を与えられた場合の1日の後の様子については、80〜70℃に浸した個体はいずれも1日後の生存は確認できなかった。60℃に浸した個体の中には生存していた個体も見られたが正常な活動が出来るまでに回復したと判断できる個体は見られなかった。一方50℃に浸した個体はほぼ正常な活動が出来るまでに回復した。10秒程度の負荷では60℃以上の高温ではなければ影響がないと推測できる。また、1秒の負荷を与えた場合は回復不能な影響を受けた個体が見られたのは80℃のみであり、70〜60℃では歩行が困難になる程度の障害しか見られず、50℃ではいずれの個体も正常な個体と差がないまでに回復した。これしたことから、1秒という短時間の高温負荷で駆除効果を得るには最低でも80℃の水温が必要と考えられる。

4. 今後の課題

高温による駆除を実際に現場で行った場合の成果については未確認となってしまったため、実際に駆除効果が得られるのか、また、効果がある場合どの程度の量の高温水が必要なのかなどについて検証していく必要がある。

引用文献
3）平松健夫（2001）アメリカザリガニ（Procambarus clarkia(Girard）の棲み　体形構造と観察、地球科学55巻，22〜239。