大型多線式 TDR プローブによる面的バルク電気伝導度計測 Measurement of Bulk Electrical Conductivity Using a Multi-Wire TDR Probe

〇田川 堅太* 長 裕幸** 児玉 大輔** 藤巻 晴行*** Kenta Tagawa Hiroyuki Cho Daisuke Kodama Haruyuki Fujimaki

1. はじめに

リモートセンシングによる広域スケールの表層土壌水分観測において,取得した衛星データの校正を行うことを目的とし,長らは伊藤ら(2009)」が開発した多線式プローブを改良した,観測面内の面的土壌水分を直接計測できる大型多線式 TDR プローブを開発した.このプローブによる計測実験の結果,面的にばらつきの少ない条件において面的土壌水分量の変化を把握することができた.しかし,同時に計測されるバルク電気伝導度については,その計測値が面的な代表値として適用可能であるか未確認である.本研究では,蒸発過程における面的なバルク電気伝導度計測の有効性を検討した.

2. 実験方法

多線式プローブは, 隣接する TDR プローブ がアース用ロッドを共用することで, プローブ設 置面上の体積含水率(θ)を隙間なく測定する ものである.本研究では, 0.96 m の感知部長 (ロッド間隔 0.1 m, 直径 5 mm)を有する 3 組の TDR プローブ(P1, P2, P3)を配した大型多線 式プローブを自作した.電場シミュレーションか ら推定された同プローブの鉛直方向の影響範 囲は, 上下 0.05 m 程度であった.

縦 0.81 m, 横 1.10 m, 高さ 0.20 m の木箱 に, EC=0.08Sm⁻¹の NaCl 溶液を溜め, 砂(粒 径 0.15 ~ 0.6 mm)を高さ 0.10 m まで塩分の 均一化のため撹拌しながら沈降充填した. 充 填過程で多線式プローブを深さ 005 m に水平 に埋設した(Fig.1). また, Campbell Scientific 社(CS 社)の SDMX50 型マルチプレクサー(CS 社)を介して TDR100 ケーブルテスター(CS 社) に接続した CS640 型小型プローブ(ロッド長 0.075m, 間隔 0.006 m, 直径 0.0016 m, CS 社) を 3 ヶ所(Fig.1 の A, B, C)の深さ 0.01, 0.03, 0.05, 0.07, 0.09 m に埋設した.

地下水面が地表面と等しくなるように余剰水

Fig. 2 多線式プローブと EC 計で計測した NaCl 溶液電気伝導度(σ_w)の比較.
Comparison of electrical conductivity measured by multi-wired TDR probe and EC meter.

*鹿児島大学大学院連合農学研究科 The United Graduate School of Agricultural Sciences, Kagoshima Univ., **佐賀大学農学部 Faculty of Agriculture, Saga Univ., ***鳥取大学乾燥地研究 センター Arid Land Research Center, Tottori Univ.

キーワード:面的バルク電気伝導度,多線式 TDR プローブ,土壌水分量

を排水後,2台の扇風機で砂表面に送風し,砂中の水分の蒸発をうながした.

CR23X データロガー(Campbell Scientific 社)を利用して, 蒸発過程における砂のインピーダンス

の逆数(\mathbb{R}^{-1})と比誘電率(ε)を15分間隔で測定 した. 測定した \mathbb{R}^{-1} 値は, 別途実施したキャリブ レーションの結果得られた式(**Fig. 2**)に代入し, σ_{b} 値を求めた.また, ε 値については, 多線式 プローブで測定した値を別途求めたキャリブレ ーション式に, 小型プローブで求めた値を Topp 式²)にそれぞれ代入し, θ 値を求めた.

3. 結果と考察

Fig. 3は,小型プローブで測定した B 地点 (**Fig. 1**)のθ分布の経時変化を表す.砂中のθ は,時間の経過とともに上層から順に低下し, 100~120 h 後にはほぼ一様な低水分分布が 形成された.地点 A および C においても,類似 したθ分布の変化が観察された.

Fig. 4に,同様に小型プローブで測定した B 地点の σ_b 分布の経時変化を表す. σ_b は, θ の 変化と同じように時間経過に伴い上層からの 値の低下,最終的にほぼ一様な分布を示した. また, θ 同様地点 A,C において類似の分布の 変化が観察された.

Fig. 5に、多線式プローブで測定した σ_b 、 θ を示す.また、比較対象として、小型プローブ で測定した地点 A, B, C のそれぞれ 5 深度計 15 点の θ 値の平均値を併記する. θ 値の比較 の結果、多線式プローブの計測値は小型プロ ーブの平均値によく一致し、両者の差は最大 で $0.01m^3m^3$ であった.それに対し、 σ_b 値を比 較すると、グラフの形状は類似したが、多線式 プローブと小型プローブの差は最大で約 $0.02Sm^{-1}$ となった.ところで、キャリブレーション 時、NaCl 溶液の電気伝導度 $0.1Sm^{-1}$ 以下の 場合、多線式プローブ、小型プローブの計測 値の差は約 $0.001Sm^{-1}$ 以下であった.このこと から、本実験の σ_b の差は、供試土の均一化が 不完全であったことによると考える.

引用文献:1) 伊藤ら(2009): 土壌の物理性, 111: 35 - 41., 2) Topp ら(1980): Water Resour. Res., 16: 574 - 582.,

Fig. 5 多線式プローブで測定したバルク電気 伝導度(σ_b)と体積含水率(θ)の経時変化. Changes in bulk electrical conductivity(σ_b) volumetric water content(θ) measured by the multi-wire probe.