地すべり土の強度回復メカニズムに関する一考察 Strength recovery mechanism of landslide soils

〇中村真也*, 江口佑人**, 木村匠*, 宜保清一**** Shinya NAKAMURA, Yuto EGUCHI, Sho KIMURA and Seiichi GIBO

1. はじめに

物理的性質鉱物学的性質の異なる3種類の地 すべり土について,再圧密時間を変えて回復強 度測定試験を行い,各試料の強度回復の様相, 強度回復と再圧密効果および再圧密時間の関 係について検討し,回復強度の発現メカニズム について考察した。

2. 地すべり土試料

中国・廟湾地すべりの馬蘭黄土および赤色砂 質土(宜保ら,1998),群馬・中之条地すべり の赤紫色凝灰岩(劔持ら,2001)について,風 乾後に425µmフルイを通過させ,各試験に供し た。粒度試験は音波処理反復法(吉永ら,1984) によった。各425µm以下試料の粒度組成および 鉱物組成はTable1および2に示す通りである。

3. 強度の回復特性

回復強度測定試験にはリングせん断試験機 (宜保,1994)を使用した。スラリー状にした 試料を水浸下で垂直応力 σ n=100kN/m2 により 正規圧密し,その後に大変位の排水せん断(定 応力,せん断速度 v=0.01mm/min)を行った。 地すべりの滑動・停止・再発を想定し,完全軟 化強度 τ_{sf} および残留強度 τ_r を求めた後,せん 断を停止して所定の時間再圧密し,再せん断を 行って回復強度 τ_{re} を測定した。

3.1 せん断強度の低下および回復

試験に使用したリングせん断試験機(宜保, 1994)はエアサーボ制御装置により載荷重を制 御して定圧状態を実現するものである。載荷重 は一定であるが、せん断時のダイレイタンシー の影響を受けるために、せん断面における有効 垂直応力はせん断に伴って変化する。実際の地 すべり面で起こる現象を再現するものであり、 中村ら(2000)、Gibo et al. (2002)もこの方式 で回復強度を求めている。再圧密時間は2日間 とした。Fig. 1 (a, b)は、馬蘭黄土および赤紫 色凝灰岩試料の有効垂直応力 $\sigma_n'=100 \text{kN/m}^2$ の 下での応力比-せん断変位関係である。馬蘭黄

Table 1 425µm以下試料の粒度組成(%) Grain size distribution of the sub-425µm samples

					I	
試	料	粘土分 2µm以下	シルト分 2~20µm	細砂分 20~200µm	粗砂分 200~425µm	
馬蘭黄土		18.7	30.9	50.4	0.0	
赤色砂質土		58.6	25.0	15.5	0.9	
赤紫色凝灰岩		92.5	3.3	3.8	0.4	

Table 2 425µm以下試料の鉱物組成(%) Mineralogical properties of the sub-425µm samples

試 料	St	Ch	Mc	Kt	Qr	Fd	
馬蘭黄土	1	6	15	1	56	21	
赤色砂質土	0	9	25	8	35	23	
赤紫色凝灰岩	42	0	0	41	16	1	
St:スメクタイト, Mc:雲母, Ch:緑泥石						石	

Kt:カオリナイト, Qr:石英, Fd:長石

*琉球大学農学部 Faculty of Agriculture, University of the Ryukyus, **琉球大学大学院農学研究科(現熊本県芦北町役場) Graduate School of Agriculture, Univercity of the Ryukyus(Ashikita town office, Kumamoto Pref), ***放送大学沖縄学習センター The Open University of Japan, Okinawa Study Center. キーワード: 土の静力学的性質

土試料では応力比 τ/σ_n' が全体的に高めで,強度の低下率 $[(\tau_{sf}/\sigma_n' - \tau_r/\sigma_n') / (\tau_{sf}/\sigma_n') \cdot 100$ (%)]が 11.7%と低い。馬蘭黄土試料の回復率は、82.7%となり,強度の回復が顕著である。一方,赤紫色凝 灰岩試料では低下率が 67.5%,回復率が 0.6%となり,残留強度からの強度の回復は小さい。馬蘭黄 土試料の再せん断時では、回復強度の発現に対応して有効垂直応力の増加が認められる。これは再 せん断時のダイレイタンシーによるものと考えられる。一方,赤紫色凝灰岩試料の再せん断時には、 垂直応力の増加は認められず、強度の回復も見られない。再圧密時間 2,4 および 14 日間の際の各 試料の応力比–せん断変位関係を Fig.2 に示す。強度が回復する馬蘭黄土試料および赤色砂質土試 料では、回復強度の応力比 τ_{rc}/σ_n' に再圧密時間による差異は認められなかった。また、赤紫色凝灰 岩試料においても、再圧密時間によらず、 τ_{rc}/σ_n' はほぼ同じ値を示した。

3.2 強度回復のメカニズム

Fig.3 (a, b)は、試料のせん断面に作用する有効垂直応力 σ_n' を厳密に制御して得られた馬蘭黄土およ び赤紫色凝灰岩試料の応力比-せん断変位関係である(再圧密 2 日間、 $\sigma_n' = 100 \text{kN/m}^2$)。 σ_n' の厳密 制御によりせん断時のダイレイタンシーが強度発現に及ぼす影響を低減させることができる。Fig.1 (a)におい て σ_n' の増加が見られた馬蘭黄土試料の回復強度発現時においても σ_n' は変化していない。応力比は、 せん断の初期にピークを示した後、急激に残留状態まで低下した。このピークは、せん断変位に伴ってすぐ に失われたことからも、再圧密時にかみ合った粒子間のインターロッキング作用による抵抗力と考えられる。 Fig.1 (a)の結果と併せると、回復強度は、せん断の初期にはインターロッキング作用が主で、その後にダイレ イタンシーに伴う抵抗力が引き続き動員され、発現されると考えられる。

引用文献

宜保ら(1998):第 37 回地すべり学会研究発表講演集,地すべり学会,新潟, pp.101-102. 宜保(1994): 地すべり, Vol.31, No.3, pp.24-30. 劔持ら(2001):第 40 回日本地すべり学会研究発表講演集,地すべり 学会,群馬県, pp.337-340. 吉永ら(1984):日本土壌肥料学雑誌, Vol.55, No.3, pp-248-256. 中村ら(2000): 地すべり, Vol.37, No.3, pp.10-17. Gibo, et al. (2002):Geotechinique, Vol.52, No.9, pp.683-686