普通ポルトランドセメントを使用したコンクリートの相対動弹性係数と各種強度の関係

Relation between Various Strength and Relative Dynamic Modulus of Elasticity of Concrete using Ordinary Portland Cement

○緒方 英彦*, 周藤 将司**, 兵頭 正浩*
OGATA Hidehiko*, SUTO Masashi** and HYODO Masahiro*

1. はじめに

寒冷地において凍害の進行が懸念されるコンクリート構造物においては、劣化程度を評価するために超音波法による非破壊試験や採取オアによる破壊試験が行われる**1）。超音波法で測定される超音波伝播速度は、同様の非破壊試験である共鳴振動法で測定される一次共鳴振動数から算定される動弾性係数との関係が理論式、実験式で示されているとおり、コンクリートの凍結融解強度を評価するための指標である相対動弾性係数との関係も明らかにされている2）。コンクリートの相対動弾性係数は、JIS A 1148:2010「コンクリートの凍結融解試験」で定義されている指標であり、使用材料や配合の異なるコンクリートの凍結融解抵抗性を評価する指標として、コンクリート構造物の耐久性を直接的に評価するものではないとされているが、データの蓄積が多数認知度も高いことから、供用中の構造物における診断指標として一般に使われている**3）。

構造物の診断の目的は、劣化程度を明らかにし、安全性や耐久性の性能を評価することにある。その結果が性能の回復や向上のための対策の策定に用いられる。性能の評価や対策の策定では、超音波伝播速度や相対動弾性係数などの非破壊指標ではなく、設計に直接結びつく強度の把握が必要になり、凍害劣化が懸念される構造物においては、相対動弾性係数と強度の関係式が必要になる。相対動弾性係数と強度の関係の既往の研究としては、長谷川4)，松村ら5）のものがあるが、データ数が少なく、結果の汎用性の確認も十分ではない。

そこで本研究では、普通ポルトランドセメントのコンクリートを気中凍結水中融解試験（B法）に供し、凍結融解作用により劣化したコンクリートの相対動弾性係数と圧縮強度、静弾性係数、引張強度の関係式を求め、既往の関係式と比較する。

2. 凍結融解試験および強度測定

表1 AEコンクリートの示方配合

<table>
<thead>
<tr>
<th>Gmax (mm)</th>
<th>スランプ (cm)</th>
<th>WC (%)</th>
<th>空気量 (%)</th>
<th>結晶率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>8±2</td>
<td>60</td>
<td>6±1</td>
<td>39.6</td>
</tr>
</tbody>
</table>

単位量（kg/m³）

<table>
<thead>
<tr>
<th>水</th>
<th>セメント</th>
<th>純材</th>
<th>粗材</th>
<th>混和剤（g/m³）</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>283</td>
<td>702</td>
<td>1,056</td>
<td>2,830</td>
</tr>
</tbody>
</table>

本研究で作製した供試体は、non-AE および AE コンクリートの2種類の円柱供試体（φ10×20cm）である。AE コンクリートの示方配合は表1に示すとおり、non-AE コンクリートの示方配合は表1から混和剤を抜いたものである。セメントは普通ポルトランドセメント、細骨材と粗骨材は鳥取産を使用し、混和剤はポリカルボン酸エーテル系の高性能AE減水剤（レオピルドSP8N）を使用した。

供試体は、所定の材齢（凍結融解開始材齢）まで水温20℃の標準水中養生を行い、その後JIS A 1148:2010に準拠した気中凍結水中融解試験（B法）に供した。凍結融解開始材齢は、凍結融解抵抗性の高低を操作するために、non-AE コンクリートで7日と14日、AE コンクリートで7日と28日とした。

凍結融解試験途中の相対動弾性係数の測定は凍結融解30サイクル毎に行い、相対動弾性係数が概ね所定の値まで低下した際には圧縮強度、静弾性係数、引張強度の測定を実施した。相対動弾性係数と各種強度の関係は、既往の研究45）と同様に、凍結融解試験（相対動弾性係数100%）の測定値に対する各劣化段階の測定値の比として整理した。ここで、本研究におけるデータ数は38、既往の研究のデータ数は高柴らが4、松村らで11である。

3. 相対動弾性係数と各種強度の関係

(1) 圧縮強度

相対動弾性係数 DM と圧縮強度比 Rc の関係を図1に示す。上が既往の研究、下が本研究の図である。図中の実験は近似直線であり、近似式は次のよ
（2）静弾性係数
相対動弾性係数 DM と静弾性係数比 Rem の関係を図-2に示す。近似式は、次のようになる。
既往の研究 Rem=0.0149(DM−100)+1
本研究 Rem=0.0128(DM−100)+1(R=0.84)
既往の研究では、相対動弾性係数が10%低下するときには弾性係数は約15%低下するが、本研究でも
概ね同様の値が得られている。相対動弾性係数と静弾性係数比の相関係数は0.84である。

（3）引張強度
相対動弾性係数 DM と引張強度比 Rs の関係を図-3に示す。既往の研究では、引張強度比の結果が
示されていないことから、本研究の結果だけである。本研究の近似式は、次のようになる。
本研究 Rs=0.0004(DM−100)+10(R=0.80)
本研究の結果では、相対動弾性係数が10%低下するとときには引張強度は約10%低下することになる。相
対動弾性係数と引張強度比の相関係数は0.80である。