メガシティ・ジャカルタにおける土地利用変化が 地表面温度および顕熱の空間分布に及ぼす影響
Impact Analysis of Land Use Change on Temperature and Sensible Heat of Land Surface in Mega City, JAKARTA
〇吉田貢士*,田畑聡美*,安瀬地一作*,前田滋哉*,黒田久雄*

Koshi YOSHIDA, Satomi Tabata, Issaku Azechi, Shigeya Maeda and Hisao Kuroda

1. はじめに

世界各地のメガシティ(人口 1000 万人以上)で ヒートアイランド現象が深刻な問題となっている。 その原因の一つとして、緑地や農地の減少に伴 い、舗装道路やビルなどの人口構造物が増加す る、いわゆる都市化が挙げられる。本研究では地 表面の熱特性が異なる土地利用別の1次元熱 収支モデルを構築し、衛星画像から得られる地 表面温度の情報と組み合わせることにより、都市 からの排熱の大部分を占める顕熱フラックスの広 域的な空間分布を推定した。さらに1930、1960、 2000 年の土地利用データを用いて当時の顕熱 フラックス量を推定した。

2. 対象地域

本研究ではジャカルタ都市圏を研究対象 とした(Fig.1)。2012年9月8日から11日 にインドネシア・ジャカルタのカンプンバリ において現地調査を行った。ミレニアムホテ ルの屋上(地上約50m)から赤外線サーモグ ラフィカメラ(FLIRシリーズi7)で日の 出後の6時30分から日の入り前の17時30 分まで1時間毎に各土地被覆の撮影を行った。 また同時刻に携帯型赤外線放射温度計を使い、 地上 0.5mから同様の土地被覆の地表面温度 を計測した。観測対象とした土地被覆は河 川・アスファルト・植生・屋根・プールであ る。**Fig.2** に熱赤外サーモグラフィーカメラ により撮影した地表面温度の分布を示す。使 用したカメラの解像度は 140×140 ピクセル である。またホテルの屋上に気象ステーショ ンを設置し、温湿度・日射・風速等の気象デ ータを 30 分毎に計測した。また、周辺のチ ェンカレン、ポンドック、タンジュン気象観 測所における1時間毎の気象観測データを入 手した。

Fig.1 Study Area

Fig.2 Infrared image (at 14:30 9/10)

3.1次元熱収支モデル

現地調査によって得られた地目別地表面 温度と気象データにより1次元熱収支モデル を構築した。このモデルはペンマンモンティ ス法により得られる可能発散量に蒸発散効率 β を掛け合わせることにより、熱収支式(式 1)から地表面温度および顕熱フラックスを 算出することができる。蒸発散効率 β は土地 利用により異なり、 $0\sim1$ の範囲で変化する。

 $Rn=H+\beta lET+G$ (1)

ここで、Rn:純放射量、H:顕熱フラックス、 lET:潜熱フラックス、G:地中伝導熱、β: 蒸発散効率である。**Fig.3** にアスファルトと 水面における地表面温度の実測値と計算値を 示す。

[所属]*茨城大学 Ibaraki University

[キーワード] ヒートアイランド、熱収支モデル、衛星画像、インドネシア

4. 顕熱フラックスの空間分布

熱収支モデルから地表面温度と蒸発散効率 βとの関係式を導き、衛星画像から得られる 地表面温度分布から蒸発散効率βの空間分布 を求めた。衛星画像は2004年6月21日に撮 影されたアスター(解像度:90m×90m)の 熱バンド画像を用いた(Fig.4)。2000年の土 地利用(Fig.5)に基づき集計した結果を **Table1** に示す。地表面の熱特性を表す β の分 布が求まれば、熱収支モデルに過去の気象デ ータを入力することにより、当時の顕熱フラ ックスの推定が可能となる。Fig.3に2004年 6月21日11時における顕熱フラックスの推 定結果を示す。熱収支モデルを用いることに より、広域的な顕熱フラックスの時間的・空 間的分布が再現可能となった。構築した熱収 支モデルと土地利用データを用いて、2004 年6月21日11:00の気象データをインプッ トとした際の顕熱フラックスの総量を評価し た(Fig.6)。本研究の対象地域においては宅地 面積率は1930年の16%から2000年の52% に増加した。それに伴い、顕熱フラックスは 6722 (MJ/hr) から 8226 (MJ/hr) に増加し た。顕熱フラックスは対象地域の大気を温め る効果を持つため、フラックスの増加により ヒートアイランド現象が引き起こされる。ま た、気温の上昇は、エアコン使用量の増加に よる人口排熱の増大を引き起こすことになる。

Fig.3 Comparison of observed and calculated surface temperature

Table 1 Estimated β value in each land use

	β
森林	0.86
水域·湿地	0.71
海	0.69
その他農地	0.58
田	0.55
草地·荒地	0.49
宅地	0.39