損傷レベルの異なる老朽既設管の影響を受ける更生管の力学挙動 Mechanical Behavior of Rehabilitated Pipe Affected by Deteriorating Pipe with Different Damage Level

小野耕平*・園田悠介*・〇三木太貴**・河端俊典*・澤田豊*・毛利栄征***・有吉充*** Kohei ONO, Yusuke SONODA, Taiki MIKI, Toshinori KAWABATA, Yutaka SAWADA, Yoshiyuki MOHRI and Mitsuru ARIYOSHI

1. はじめに

近年,農業用埋設管路の多くが更新時期を迎え,合理的な改修工法として管路更生工法 が注目されている.しかしながら,複雑な管路構造を有する農業用埋設管路への適用には 課題が多く,とりわけ,偏心荷重や地震動を受けた際に,地盤内に残存する老朽管が更生 管の力学挙動に与える影響について十分な解明が進んでいない.

本研究では、老朽管の損傷度が更生管に与える影響について検討を行うため、種々の損 傷度を有する供試管を使用して、土槽内埋設実験を実施した.

2. 実験概要

2.1 実験模型

実験土槽の内寸は,幅 1830mm,高さ 1240mm,奥行 630mm である.模型地盤の材料には 6・7 混合ケイ砂を使用し,相対密度 97%の密詰め地盤によって供試管の埋設を土 被り 1D で行った.

2.2 実験供試管

Table 1 に供試管の諸元を示す. Fig.1 に示 すような二層構造を有する供試管によって, 老朽管が更生された状態を再現した. 更生管 は PVC 管, 老朽管は STEEL 管によって模擬 した. それぞれ 2, 4, 8 分割された STEEL 管を使用することにより, 種々の損傷度を表 現した. なお, 更生管の変形挙動を把握する ために, 管内の鉛直, 水平, 左右斜め 45°の 計 4 方向に変位計を設置し, 内面に 11.25°間 隔で 32 枚のひずみゲージを貼付した.

2.3 実験ケース

Table 2 に実験ケースを示す. 老朽管損傷度 と載荷位置を変化させた全 8 ケースを実施し

Table 1 供試管諸元

Properties of pipes					
	管種	管厚 t	管径 D		
		(mm)	(mm)		
更生管	PVC	9.80	318.0		
老朽管	STEEL	31.75	382.0		

(a) 2 分割
(b) 4 分割
(c) 8 分割
Fig.1 供試管模式図
Schematic diagram of test pipes

Table 2	実験ケース	ス

Experiment cases			
Case No.	老朽管損傷度	載荷位置	
Case 1	更生管のみ		
Case 2	Case 2 2 分割		
Case 3	4 分割	<u> </u>	
Case 4	8 分割		
Case 5	更生管のみ		
Case 6	2 分割	庐 入	
Case 7	4 分割	加心戦的	
Case 8	8 分割		

た. Case 1-4 では供試管直上部地表面に, Case 5-8 では直上部から水平方向に 300mm 偏心 させた位置に, 載荷板(幅 500 mm, 奥行 600mm)を介し, 最大 30kN の荷重(100kPa)を載荷 した. Case 1, 5 では更生管として PVC 管のみの埋設載荷を実施した.

* 神戸大学大学院農学研究科 Graduate School of Agricultural Science, Kobe University, ** 神戸大学農学部 Faculty of Agriculture, Kobe University, *** 農村工学研究所 National Institute for Rural Engineering キーワード: 埋設管, 管路更生工法, 載荷試験

実験結果・考察

3.1 管のたわみ量

Fig.2 に更生管の鉛直たわみ量計測結果を示す.た わみ量は管径の増大を正として定義している.2分 割されたケースにおいて、極端に小さな鉛直たわみ 量を計測した.老朽管が外力を受け持つことにより, 内側に位置する更生管への外力の伝達を妨げたこと を示している. 直上載荷時においては, 老朽管の損 傷が進行するにつれて更生管の変形量も増大し、老 朽管の損傷度が更生管の変形に対して影響を与えて いることが分かる.しかしながら,Case7ではCase 8 よりも鉛直たわみ量が極端に大きいことが確認さ れる.これは, 偏心載荷時においては, 老朽管損傷 度の進行具合のみで,更生管の変形挙動を決定する ことができないことを示している.

3.2 管の内面円周方向ひずみ

Fig.3 に 30kN 載荷時における更生管の内面円周方 向ひずみ分布図を示す. Case 2,6 を除くケースにお いて、管頂部で引張ひずみが卓越しており、応力集 中が作用していることが確認される.これは老朽管 の角部分が外表面に激しく接触することにより生じ たものであると考えられる. 偏心載荷時におけるひ ずみ分布は、直上載荷時よりも複雑であり、老朽管 が歪な形状へと変形したことが伺える.また, Case 7 において Case 8 よりも大きな引張ひずみを管頂部に おいて計測した.4 分割片は鉛直土圧が作用する受 圧面積が8分割片よりも大きいことから、管頂部に 応力集中を引き起こす分割片に作用する外力が大き くなったものと考えられる.以上から、老朽管損傷 度が小規模であっても, 偏心載荷時には更生管にと って破壊の危険性は低減されないといえる.

4. まとめ

土槽内埋設実験を実施した結果、老朽管の角部分

(b) Case 5-8

Fig.3 管の内面円周方向ひずみ分布 Distribution of inner circumferential strain

によって更生管に応力集中が生じることが分った.また,偏心載荷時においては老朽管の 損傷が小規模であっても、更生管にとって危険な状態になる可能性があることが明らかに なった.

参考文献

1) 農林水産省編 (2010):土地改良事業計画設計基準「パイプライン」基準書・技術書