AE パラメータによる局所損傷を有する構造材の特性情報の抽出 Characteristics Identification of Local Damage of Structural Materials using AE Parameters

○ 武内良太*・山岸俊太朗*・鈴木哲也**・森井俊広**・河合隆行***
Ryota TAKEUCHI, Shuntaro YAMAGISHI, Tetsuya SUZUKI, Toshihiro MORII and Takayuki KAWAI

1. はじめに

農業水利施設の長寿命化には、構造損傷 の非破壊検出が不可欠である.検出すべき 損傷情報には、構造物の欠損部位やひび割 れ損傷の進行した部位の変形挙動など、面 的ないし空間的な情報取得が不可欠である が、その技術開発は途上である.本論は、 損傷情報に関する検出技術の確立のための 基礎的検討として、局所損傷を有するコン クリートの変形挙動を3次元画像解析と AE (Acoustic Emission)法を組み合わせて 検討した結果を報告する.

2. 実験·解析方法

本研究では,既存施設より採取したコン クリート・コアを対象に圧縮載荷時の変形 挙動を3次元画像解析により評価し、その 際に発生する弾性波を AE 法により検出し た.既往の研究では、圧縮載荷時の AE 発 生挙動が損傷と密接に関連していることが 明らかにされている¹⁾. 本検討における AE 計測は,6chによる発生源位置標定と検出 波の最大振幅値を評価した.3次元画像解 析は CCD カメラにより行った. 画像取得 は、計測対象に対して2台の CCD カメラ を平行に設置し、100Hzでデータを取得し た. 画像解析は、計測対象表面に施された ランダムパターンを追跡し, 初期状態にお ける小領域画像を一定時間後の試験画像の 中から正規化された相関係数の最適値とな る領域を探し出すことによってランダムパ ターンの移動量(変位量)を評価した.

結果および考察

圧縮破壊過程における AE 発生源の位置 標定を試みた結果を図-1 に示す.本図は 荷重 9.8 kN, 16.3 kN および 26.0 kN におけ る AE 源位置標定の結果と解析画像の関係 を示したものであり, AE パラメータであ る最大振幅値を位置標定の結果に反映させ るため,最大振幅値を42~59 dB,60~79 dB, 80~99 dBの3種に分類し、プロットのサ イズを変更した. Type A (損傷進行サンプ ル)では、最大振幅値 42~59 dB の AE が 高頻度で発生し, コア中央部および変形部 分に集中していることが確認された.載荷 が進むにつれて, AE はコア中央部に集中 し、変形部分では検出される AE が比較的 少ないことが確認された.これは、載荷荷 重の増加に伴い,ひび割れの進展が顕著に なったことにより, AE の伝播が困難にな り、位置標定に必要な AE が検出できなか ったものと考えられる. Type B (損傷サン プル)および Type C (無損傷サンプル) で は, Type A と比較して異なる AE 発生挙動 が確認された.

そこで、本研究では検出波の特性をワイ ブル解析により評価した.評価結果を図 - 2 に示す. Type B を CT 画像より損傷域と無 損傷域に区分し、検出された AE の最大振 幅値をワイブル分布より評価した結果、荷 重 9.8 kNにおけるワイブル分布の最頻値は 損傷域 50 dB,無損傷域 53 dB であった(図 - 2 (a)).最頻値の差は 3 dB と小さいもの の、損傷域の分布範囲は無損傷域と比較し て小さく,偏在していることが確認された.

^{*}新潟大学大学院自然科学研究科 Graduate School of Science and Technology, Niigata University, **新潟大学自 然科学系(農学部) Faculty of Agriculture, Niigata University, ***新潟大学災害・復興科学研究所 Research Institute for Natural Hazards and Disaster Recovery, Niigata University

荷重 16.3 kN では、損傷域・無損傷域とも に分布範囲が拡大し,分布の最頻値も同程 度であるが,損傷域は無損傷域よりも広範 囲に分布しており、最大振幅値のばらつき が大きいことが確認された(図-2(b)). 荷重26.0 kNにおいて, 無損傷域は荷重16.3 kNと比較し、分布形状に大きな変化はなく、 損傷域において確率密度関数 f(x)の低下が 確認された(図-2(c)). 載荷過程におい て,損傷域の確率密度関数 f(x)は著しく低 下し、最大振幅値のばらつきが増加傾向に あることが確認された.検出された AEの 最大振幅値の観点から,損傷を有する構造 材料では, 圧縮破壊が損傷域において低応 力下において局所的に進行し, AE 発生挙 動に影響を及ぼすものと考えられる.

Type A

Type B

Type C

応力レベル16.7%

応力レベル4.2%

荷重:9.8 kN

本報では,局所損傷を有する構造材の圧 縮破壊過程を AE および画像解析により詳 細評価を試みた結果を報告した. 検討の結 果,低圧縮応力下において破壊の局所化が 確認された.

引用文献

0.07

1) Suzuki, T. and Ohtsu, M.: Damage Evaluation of Core Concrete by AE, Concrete Research Letters, Vol. 2(3), pp. 275-279, 2011.

100

100

100

