AE-SiGMA 解析による酸化マグネシウム改良土の割裂破壊過程の考察

Splitting process of magnesium improved soil by AE-SiGMA analysis

〇岸直人*・島本由麻**・鈴木哲也***

Naoto Kishi, Yuma Shimamoto and Tetsuya Suzuki

1. はじめに

近年,酸化マグネシウムは,生態系への 環境負荷の軽減等を背景に,地盤改良材と して用いられてきている¹⁾。

本研究では、地域資源であるもみ殻灰を 有効利用した植生基盤材を開発するための 基礎的検討として、MgO改良土を対象にも み殻灰混入土(以下、シリーズ MR)およ び未混入土(以下、シリーズ M)において 割裂試験を行い、力学特性を検討した。あ わせて、画像解析および AE-SiGMA 解析か ら、割裂破壊過程を評価した。

2. 解析方法

AE 法の波形処理としてモーメントテン ソル解析の有用性が明らかになっている。 本研究では,取得した AE 波に対して,簡 易な解析手法である SiGMA 解析によって 評価した。初動振幅値と到達時間差から固 有値解析を行い,せん断率を算出した。せ ん断率からひび割れを引張クラック・せん 断クラック・混合型クラックに分類した。 なお,AE イベント定義時間は 100 μs とし た。

3. 実験方法

直径 50 mm, 高さ 100 mm の円柱供試体 を 2 シリーズ 6 本ずつ作製した。示方配合 を表-1 に示す。なお,供試体の内部構造を 把握するため, 54 kHz, 500 V で探触子を用 い, 超音波伝播速度を測定した。

材齢7日において割裂試験を行った。割 裂試験では,破壊過程におけるAE発生挙 動の計測および画像解析を実施した。AE の計測装置はSAMOS (PAC 社製)である。

表-1 示方配合設計

Specified mix proportion.

実験 シリーズ	細砂 (g)	バーミ キュライト (g)	酸化マグ ネシウム (g)	もみ殻灰 (g)	水 (g)
М	280.0	14.0	58.8	0.0	73.5
MR	266.0	13.3	58.8	12.8	73.5

図-1 実験概要図

Experimental set up for splitting test.

AE センサは計 6 個設置した。150kHz 共振 型センサを用い、しきい値を 40 dB, 増幅 値を 80 dB として計測を行った。画像解析 はデジタル画像相関法を用いて行った。こ れは, CCD カメラで撮影したデジタル画像 を数値解析することにより,撮影範囲の変 位量およびひずみ分布を推定する手法であ る。実験概要図を図-1 に示す。

- 4. 結果および考察
- 4.1. 力学特性

割裂引張強度はシリーズ M:0.12 N/mm², シリーズ MR: 0.74 N/mm²であった。超音 波伝播速度はシリーズ M: 1,336 m/s, シリ ーズ MR: 1,864 m/s であった。もみ殻灰を 混入すると引張強度が約 6 倍,超音波伝播

*新潟大学農学部 Faculty of Agriculture, Niigata University

新潟大学大学院自然科学研究科 Graduate School of Science and Technology, Niigata University *新潟大学自然科学系(農学部) Faculty of Agriculture, Niigata University

キーワード:SiGMA 解析,画像解析,酸化マグネシウム改良土

速度が約 1.5 倍増加することが確認された。 もみ殻灰を混入による引張強度の増加は, 雨水等による基盤材の劣化・損傷を緩和す るものと考えられる。

4.2. 画像解析および AE-SiGMA 解析にお
ける割裂破壊過程の評価

画像解析の結果から、両シリーズとも応 カレベル 95%で最終破断面におけるひず み量の増大が確認された。特に載荷板との 接触部付近で局所的にひずみ量が増大する ことが確認された(図-2)。

画像解析により割裂破壊時の局所ひずみ の増加が確認されたことから,SiGMA 解析 を用いた3次元位置評定によるAE 源の発 生位置および形成モードの同定と割裂破壊 過程の評価を試みた。なお、シリーズMに おいてイベントは検出されなかったため、 図-2はシリーズMRのみに対してSIGMA 解析の結果を付記した。シリーズMにおい てイベントが検出されなかった要因として は、低強度かつ空隙構造の発達が影響して いると考えられる。

SiGMA 解析の結果,シリーズ MR におい て応力レベル 80%で供試体中心部から供 試体上部で AE が発生しており,応力レベ ル 95%で y 軸方向(最終破断面方向)に広 がっていくことが確認された。破壊クラッ クの形成モードの発生源位置を比較すると, 引張クラックは供試体中央部近傍,せん断 クラックは載荷板の両端面において頻発す ることが確認された。

図-3 にシリーズ MR における AE イベン ト形成モード別発生頻度を示す。引張クラ ックがせん断クラック・混合型クラックと 比較して卓越していることが確認された。 x 軸方向のひずみ量増加にともない, AE イ ベントの増加が確認された。すべての形成 モードにおいて, x 軸方向のひずみ量の増 加点より先に AE の発生が始まることもあ わせて確認された。特に引張クラックにお いては顕著にこの結果を示した。画像解析 による供試体表面におけるひずみ量の増加

図-2 画像解析および AE-SiGMA 解析結果 Results of image analysis and AE-SiGMA analysis.

Relation between horizontal strain and crack generation on the stress level (series MR).

前に,供試体内部の微小なクラックを検出 している可能性が示唆された。

5. まとめ

MgO 改良土において割裂試験を行った。 検討の結果,もみ殻灰混入の有効性が示唆 されるとともに,画像解析および SiGMA 解析により,割裂破壊過程を詳細に評価で きる可能性が示唆された。

参考文献

 藤森新作・小堀茂次(2000)自然環境にやさしい 土壌硬化剤マグホワイトの開発,農業土木学会誌.
第 68 巻,第 12 号:1297-1300.