ロックフィル材の一次元圧縮試験における初期相対密度制御

Designation of initial state in one-dimensional compression tests for rockfill materials with relative density

○影浦弘樹* 西山竜朗* 長谷川高士** Koki KAGEURA, Tatsuro NISHIYAMA and Takashi HASEGAWA

1. 目的

ロックフィルダム堤体の長期供用への貢献を目的として,関連する既報 1-3)の研究成果を 発展させ、ロックフィル材の耐劣化性を把握するための試験方法に対する検討を行った.

既報の研究では、一次元圧縮試験による材料の耐劣化性の評価手法が提案・検討された 後,間隙比 e による試験初期状態の統一が試みられている.しかし,初期間隙比 e₀の統一 は、岩種毎に最大間隙比 emax と最小間隙比 emin が異なるため制御が難しい.本研究では、 その解決策として、相対密度 Drによる試験初期状態の統一に対する検討を行った.

2. 手法

試料には、美濃丹波帯産砂岩および同粘板岩を使用し、粒径幅10~20mmの集中粒径 を持たせた.これらの材料は自然環境 下における耐劣化性の相違が一般に知 られており,またその相違を反映する 試験結果の得られることが西山ら いに よって確認されているため、ここでの 供試材料として適すると判断した.

相対密度 $D_r = (e_{max}-e)/(e_{max}-e_{min})$ は、 現在の締まり具合が最も密な状態と最 も緩い状態の間のどの状態にあるかを 示す指標である.ここでは中央値 Dr= 0.50 の場合と、比較のために Dr = 0.75 の場合の計2通りの条件の下で試験を 行った.

試験方法は、emax・emin の測定方法、 試料の人工劣化手順を含めて,井上ら 3)に倣った.ただし、井上らは人工劣 化による emax・emin の変化を考慮して いないため、ここで改めて原状試料と 劣化試料の emax · emin を測定した.

表 1: emax ・ emin の測定結果 (*は井上ら³⁾より) Measured values of e_{max} and e_{min} (* Inoue et al.³)

3. 結果

各試料に対する emax・eminの測定結

* 愛媛大学農学部 Faculty of Agriculture, Ehime University

** 京都大学名誉教授 Professor Emeritus, Kyoto University

キーワード: ロックフィル材料, 耐劣化性, 相対密度

果を表1に示す.表1より,劣化試料は,原状試料と比較して破砕量がより多く,またより少ない打撃回数で締固められたことが分かる.これらの結果は,粒子の角が取れて締固められ易くなって現れたものと推察される.

表1の測定値から,各試料の取り得る e の範囲を図1に示す.図1において,各試料の 取り得る e の範囲には共通する部分があるものの,試験初期条件として全試料に共通して 特定すべき e の値は見出されず,また井上らの示す粒径が異なるケースではさらに共通範 囲が狭いケースが確認されている.ただし一方で,ここで対象としている砂岩および粘板 岩の各々について,原状試料・劣化試料の双方で範囲はほぼ同じであることが認められる. 以下に結果を示す試験においては原状試料・劣化試料の各々について初期 Dr の値を定めた が,この範囲の一致から, eo の値はほぼ等しくなった(表2,図2).

一次元圧縮試験における圧縮過程の一例を, *e*-log *p* 曲線として図 2 に, 対応する *D*_r-log *p* 曲線として図 3 に, 各々示す.

e-log p 曲線から得られた圧縮降伏応力 pc の値を表 2 に示す. 各試料に対して原状試料と 劣化試料の pc の値を比較すると,砂岩に比べ粘板岩の低下が著しいことが分かる. これら の傾向は,表 2 に示す対原状比 r (%),すなわち原状試料の pc の値に対する劣化試料の pc の値の比によって,より明らかに示される. 表 2 の粘板岩の r の値には,砂岩の場合には 見られない,pc の明らかな低下が現れている. これは自然環境下において確認されている 砂岩および粘板岩の耐劣化性の相違を妥当に反映する結果であり,Dr で初期条件を統一す る方法によっても妥当な耐劣化性の判定が得られたといえる.

4. 結論

表 2:試験結果

*D*rの導入によって試験初期状態を統一し,耐劣 化性評価として妥当と考えられる結果が得られた.

*e*max・*e*min の値には,人工劣化による変化が現れ なかったものの,破砕量や締固めの生じやすさに は変化が見られ,この点には今後も注意すべきで あろう.今後,多様な材料に対する試験結果の蓄 積とともに,三軸圧縮試験から得られる結果とも 照らし合わせることで,方法をより確実なものと することができると思われる.

