ポーラスコンクリートにおける間隙の飽和・不飽和状態が凍結融解抵抗性に及ぼす影響 Effects of Saturated and Unsaturated States on Freeze–Thaw Resistance in Porous Concrete

○緒方 英彦* OGATA Hidehiko*

1. はじめに

積雪寒冷地において凍害により劣化したコンクリ ート開水路の対策工法として,FRPM 板を既設水路 内面に設置し,既設水路とFRPM 板の間に透水性お よび保温性に優れた中込材を充填した水路更生工法 の開発が進められている¹⁾。この更生工法の中込材に は,既設水路の凍害劣化を進行させないように,側 壁背面から浸透した水を排水するための透水性,側 壁内部の温度変化を緩慢にするための保温性が求め られ,これらの二つの要求性能を満足する材料とし てポーラスコンクリートが選択された。

多孔質体であるポーラスコンクリートには、独立 空隙だけでなく連続空隙が存在し、ポーラスコンク リートの透水性は連続空隙率との相関性が高い²⁾こ とからも、中込材に要求される透水性は連続空隙率 を調整することで容易に確保することができる。た だし、多孔質体であるポーラスコンクリートは、間 隙中に入った水が凍結時に膨張することで破壊が進 行³⁾するために、間隙中の水の保持状態によっては寒 冷地で用いる材料に求められる耐久性である凍結融 解抵抗性が低下する。ポーラスコンクリートの凍結 融解抵抗性は普通コンクリートよりも一般に低く, 既往の研究で示されている⁴。したがって,本更生工 法の中込材としてポーラスコンクリートを用いるた めには、間隙の飽和・不飽和状態を踏まえた凍結融 解抵抗性の評価が必要となる。

そこで、本研究では、中込材に要求される透水性 (0.5×10⁻¹cm/s 以上)を踏まえて設定した目標空隙 率20%のポーラスコンクリート(粗骨材が7号砕石) を対象に、間隙の飽和・不飽和状態が凍結融解抵抗 性に及ぼす影響について考察を加える。

2. ポーラスコンクリートの概要

目標空隙率20%のポーラスコンクリートの配合を 表1に示す。材料は,水(W)が水道水,セメント (C)が普通ポルトランドセメント(住友大阪セメ ント,密度3.15g/cm³),混和材(P)が無機系混和材

表1 ポーラスコンクリートの配合

日1示 ,	W/B (%)	W _m /W _g (Vol.%)	V _s /V _m (Vol.%)	単位量 (kg/m ³)				
空隙率				W	В		c	G
(%)					С	Р	3	U
20	30.0	47.5	17.5	103	322	20	129	1464

W_m/W_g : モルタルと粗骨材の体積比 V_s/V_m : 細骨材とモルタルの体積比

(住友大阪セメント,密度 2.55g/cm³),細骨材 (S) が山口県蓋井島産の海砂(密度 2.865g/cm³, F.M.2.05), 粗骨材 (G)が京都府亀岡産の砕石 7 号 (密度 2.70g/cm³)である。このポーラスコンクリートの密 度は 2.006g/cm³,空隙率は 18.2%,連続空隙率は 17.6%である。作製した供試体は 10×10×40cm の角 柱供試体である。

3. ポーラスコンクリートの凍結融解抵抗性

目標空隙率20%のポーラスコンクリートの凍結融 解抵抗性は、JISA1148:2010「コンクリートの凍結 融解試験方法」に準拠して評価した。本研究では、 間隙の飽和・不飽和状態に加えて、凍結融解試験前 の供試体の水分状態が凍結融解抵抗性に及ぼす影響 を考察するために、次の4パターンで試験を実施し ている。ここで、試験開始材齢は28日であり、パタ ーン 4 (P4) を除く全ての供試体は試験開始直前ま で水温20℃の水槽内で水中養生を行っている。パタ ーン1(P1)は通常の水中凍結融解試験(A法)(間 隙飽和),パターン2(P2)は通常の気中凍結水中融 解試験 (B法) (間隙不飽和), パターン3 (P3) は 気中凍結融解試験にあたり、A法においてゴムスリ ーブの中に水を充填しない試験(間隙不飽和・供試 体湿潤), パターン4(P4)はP3と同様の気中凍結 融解試験であるが供試体は試験開始 24 時間前に水 槽から取り出し室内で気乾状態にした試験(間隙不 飽和・供試体乾燥)である。各試験パターンの供試 体数はそれぞれ3本であり、結果はその平均値とし て示す。

凍結融解300サイクルまでの各試験パターンの質 量変化率を図1,たわみ振動の一次共鳴振動数によ る相対動弾性係数を図2に示す。

*鳥取大学農学部,Faculty of Agriculture, Tottori University,ポーラスコンクリート,凍結融解抵抗性,間隙,飽和・不飽和状態

図3 P1 供試体の崩壊状況

いずれのパターンにおいても質量変化率はほと んど変化しておらず、スケーリングが生じていない ことがわかる。相対動弾性係数に関しては、P1のみ が急激に低下し、たわみ振動の一次共鳴振動数は40 サイクルまでしか測定できず,80サイクルで崩壊し た。崩壊時の P1 の状況を図3 に示すが、供試体の 長さ方向に伸びるひび割れが発生していることから も、間隙中の水が凍結時に膨張した内部膨張圧によ る破壊 ³⁾であることがわかる。このことからも、凍 結時に間隙が飽和している状態のポーラスコンクリ ートでは、凍結融解抵抗性を確保することが困難で ある。一方,間隙が不飽和状態である P2 の相対動 弾性係数は、220 サイクルから徐々に低下しはじめ たが 300 サイクルで 82.2% あり、 凍結時に間隙が水 で満たされていなければ十分な凍結融解抵抗性を有 することがわかる。P1 と P2 の間にこのような違い が生じた直接的な原因は、凍結時における間隙中の 水の保持状態の違いによるものであるが,その前提 として今回のポーラスコンクリートの空隙構造の特 徴が関係していると考えられる。前述のとおり今回 のポーラスコンクリートの空隙のほとんどは連続空 隙であり,この空隙構造の特徴のために,P1ではゴ ムスリーブ内の水が容易に間隙内に入り,P2では融 解時に間隙内に浸透した水が凍結前に容易に排出さ れたためであると推察される。気中凍結融解試験で ある P3,P4 については,凍結膨張圧を生じさせる 水が間隙中になく,またP2のように融解時に水が 浸透しポーラスコンクリートを湿潤させる条件でも ないことから,相対動弾性係数は低下せず凍結融解 の繰返し作用による劣化がほとんど生じていない。

寒冷地における開水路では、冬期の凍結期は非灌 漑期にあたり水路内を水が流れず、春期・夏期・秋 期の非凍結期は灌漑期のために用水が水路内を流れ る。つまり、非凍結期(灌漑期)に用水および側壁 背面の地下水が中込材であるポーラスコンクリート に浸透としても、それ自体は凍結融解抵抗性の低下 に大きな影響を及ぼさないと考察できる。また、凍 結期においては、側壁背面の地下水および融雪水が ポーラスコンクリートに浸透することが懸念される が、間隙中に水が保持されていなければ十分に凍結 融解抵抗性を有すると考察できる。

4. おわりに

本研究により,目標空隙率20%のポーラスコンク リート(粗骨材が7号砕石)は,水中凍結融解試験 において内部膨張圧により破壊するが,気中凍結融 解試験では300サイクルにおいて80%以上の相対動 弾性係数を有することから,間隙中に水が保持され ていなければ十分に凍結融解抵抗性を有することが 確認された。

謝辞:本研究で使用したポーラスコンクリート試験体の作製 には、住友大阪セメント株式会社セメント・コンクリート研 究所の小林哲夫氏、竹津ひとみ氏にご協力いただいた。ここ に記して謝意を表する。

引用文献

1) 農林水産省:官民連携新技術研究開発事業 (http://www.maff.go.jp/j/nousin/sekkei/kanmin/keizoku.html) 2) 梶尾聡, 古屋貴之,宇治公隆,國府勝郎:流動性の異なるモルタルを用い たポーラスコンクリートの研究,コンクリート工学論文集,29(2), pp.289-294 (2007) 3) 西林新蔵,小柳洽,渡邊史夫,宮川豊章: コンクリート工学ハンドブック,朝倉書店,p.805 (2009) 4) 小 尾稔,田口史雄:ポーラスコンクリートの耐凍害性に関する基礎 的研究,北海道開発土木研究所月報,598, pp.36-40 (2003)