ため池の地震時および豪雨時の総合リスク評価 Toatal riskevaluation on severe earthquakes and heavy rains

○ 西村伸一^{*} 古宅瑞穂^{**} 柴田俊文^{*} 珠玖隆行^{*} 水間啓慈^{***} NISHIMURA Shin-ichi, KOTAKU Mizuho, SHIBATA Toshifumi, SHUKU Takayuki and MIZUMA Keiji

1. はじめに 本研究は,ため池を対象に, 地震時の損傷確率と豪雨時の損傷確率を求 めることを目的としている.第1に,岡山 県における南海地震に対応する任意年の損 傷確率を求めている.第2に,豪雨の統計 モデルを作成し,この事象に対する損傷確率 を求める.この二つの確率を総合化し,今後 50年におけるため池の損傷確率を算定し,リ スク評価する方法を提案する.

2. 解析対象の概要 Fig.1 に解析対象である, 岡山県内のため池であるサイト H の断面を示 す.図(a)は,原断面であり,図(b)は,前刃 金工法で改修された後の断面を示しており, 本報告では,改修によるリスク低減を解析に よって求めている.また,洪水対策としては, 改修で,洪水吐の機能が補強されている.

3. 地震ハザード Fig.2には,解析に用い る南海トラフ地震を想定したサンプル波を示 している.次に,南海トラフ地震を想定した, 岡山県内のため池サイト日付近のハザー ド関数をFig.3に与える.ハザード曲線 とは,地震によってもたらされる地震動 の強さを横軸に,その地震の発生超過確 率を縦軸に示したものであるが,今回は J-SHIS¹⁾からハザードデータを入手してお り,想定される今後50年の年間の超過確 率を示している.

<u>4. フラジリティー解析</u> 地震時安定解析 は, Fig.2 のサンプル波を用いて, 振幅を 調整することによって, 地震強度の異な

Fig.3 地震ハザードおよびフラジリティ曲線 Seismic hazard and fragility curves

る応答解析を行い,堤体内の応力状態を推定する.堤体は,線形弾性状態を仮定し,Liqca²によ る有効応力解析を実施している.堤体基盤の加速度が最大時の応力状態に基づいて円弧すべり解 析を行うものとする.解析においては,堤体強度の強度の空間分布と不確定性を考慮したモンテ カルロ法を実施してる³.モール・クーロンの破壊基準を利用し,円弧すべり解析によって安全率

* 岡山大学 Okayama University, ** 愛媛県 Ehime Prefecture, *** 農研機構 National Agriculture and Food Research Organization キーワード:ため池, 地震リスク, 洪水リスク *F*_sを求め,モンテカルロ法の試行によって,破壊確率 が式(1)から導かれる.破壊確率を設定した最大加速 度ごとに求めたフラジリティ曲線*F*(*a*)をFig.3に示し ている.フラジリティは,堤体の改修前と改修後の断 面について求められている.Fig.3の地震ハザード関 数を*H*(*a*)とすると,任意年における損傷確率*P*_{fe}が式(2) によって定義される.

 $F(a) = Probability(F_s < 1)_{(1)}$ $P_{f_e} = -\int_0^\infty H(a)F(a)da$ (2) <u>4. 越流破堤確率の算定方法</u>ため池への流入量が増 大し、洪水吐の設計限界越流水深 h_d を、洪水時のピーク越流水深 h_p が上回った場合に越流破堤が生じるもの と仮定する.洪水吐からの洪水流出量と降雨による集 水域からの流入量と収支を考慮して、連続降雨 72 時間 中のピーク越流水深 h_p が求められる.降雨は、岡山市 における 44 年間の降雨データから、72 時間連続降雨を モデル化し、乱数によって疑似降雨を作成し、モンテ カルロ法の試行から越流確率を求める⁴⁾.年最大 72 時 間降雨量の確率分布を Fig.4 に示し、疑似降雨のサンプ ルを Fig.5 に示している.越流確率 P_{f_o} は、 $h_d < h_p$ を満足 する回数を総シミュレーション回数で割った値とする.

5. 浸水域の推定 破堤した場合の,ため池からの流出 による浸水域と最大浸水深の推定を,浅水流方程式を有 限体積法によって解く方法を用いて実施している.結果 を Fig.6 に示す.ここでは,浸水深 5 mm 以上の領域を 被害域と見なしている.この結果と土地利用区分から, 被害額は, *C*=196 百万円と推定される.

<u>6. リスク評価</u> Table 1 に,今後 50 おける地震と洪水 による損傷確率をまとめている. 50 年損傷確率 P_{50} は, P_{fe} もしくは P_{fo} のいずれかを P とすると,式(3) で算定 される.結果をそれぞれ, P_{fe50} および P_{fo50} とすると, 総合損傷確率 P_{all} が式(4)から計算される.これに, 浸水被害額 C を乗じて総合損傷リスクが得られる.

 $P_{50} = 1 - (1 - P)^{50}$ (3) $P_{all} = P_{fe50} + P_{fo50} - P_{fe50} \cdot P_{fo50}$ (4) 表によると,改修前総合損傷リスクは約1億5 千万円,改修後が約8400万円となった.

Table 1 50 年損傷確率とリスク Damage probabilities and risks

	改修前	改修後
地震時 50 年損傷確率	0.6882	0.4294
豪雨時 50 年損傷確率	0.2337	0.0000
50 年総合損傷確率	0.7611	0.4294
総合損傷リスク(千円)	149,517	84,357

7. まとめ 今後 50 年における地震と豪雨による損傷確率と解析によって求めた. この結果に 基づき,破堤による損失を考慮して,異なる 2 つの事象の総合的なリスク評価を行うことができた. <u>引用文献</u>1) 地震防災科学技術研究所:確率論的地震動予測地図,ハザードカーブデータ,2) LIQCA2D11・ LIQCA3D11 (2011 年公開版) 資料 (2011),3) 鈴木誠・西村伸一・高山裕太・村上章・藤澤和謙:堤防の内部診断 とリスク評価,構造物の安全性および信頼性, Vol.7, pp.623-629 (2011),4) 西村伸一・珠玖隆行・柴田俊文・藤澤和謙: 豪雨時の越流破堤に対するため池堤体の信頼性設計,地盤工学会誌, Vol.63, No.5 (2015)