不飽和浸透過程にある NH4吸着特性の異なる畑土中の窒素動態

Fate and transport of Nitrogen in soils with different adsorption charactaristics under unsaturated flow

〇中西 真紀・渡辺 晋生

Maki NAKANISHI, Kunio WATANABE

はじめに 土中の窒素は、微生物を介して態を変え、農作物や樹木を育てる栄養となる. こうした窒素の動態は、土粒子に吸脱着し、無機化や有機化、硝化、脱窒等を経て、土中水 とともに移動する複雑なものである.態の変化は一次分解反応で近似でき、反応速度定数は 土の含水率や温度に依存する.反応速度定数は、任意の条件のバッチ試験から評価される ことが多く、水分や溶質移動の影響が考慮されることは少ない.しかし実際の圃場では、 窒素は吸脱着や移動をしながら分解される.その際の分解反応速度定数の決定に、被分解物 質の吸着による変化や水の流れを考慮した研究例は少ない.そこで、NH4吸着特性の異なる 2種の畑土で不飽和浸透実験を行い、NH4の吸着態と溶存態の硝化の反応速度定数が、吸着 特性の異なる土中の窒素動態に及ぼす影響を考察した.

試料と方法 試料には,三重大学と岩手大学の附属農場で採取した畑土(砂壌土と黒ぼく土) の2 mm 篩通過分を使用した. Fig. 1 に実験装置の概要と試料の初期条件を示す. 高さ20 cm,内径 5 cm のアクリルカラムに,Fig. 1 の含水比になるよう純水で調整した湿潤土を 均一に詰めた.上端から純水を4d滴下した後,硫酸アンモニウムで調整した0.7 mg-N/cm³ 水溶液を9d滴下した.その後再び純水を18d滴下した.滴下速度は0.9 cm/dで一定と した.2.5,7.5,12.5 cm深に4極センサとテンシオメータを設置し,4極センサで電気伝導度 ECを,テンシオメータで圧力水頭を10分間隔で測定した.また,下端から35.5 cm下方に 排水口を設け,排水を電子天秤上のフラスコに受け,約30 mL 毎に採取した.NH4添加終了

時と実験終了時にカラムを解体し,各深さの含水比と pHを測定するとともに,10%KCl水溶液および純水を 用いて土中水を抽出した.そして吸光光度計

(DR6000)を用いて排水液と抽出液のNH₄とNO₃の 濃度を測定した.KCl抽出液と純水抽出液で測定した NH₄は、それぞれ全量と溶存量とみなした.実験は 25℃の恒温室で行った.また窒素各態の土中分布を、 水分移動式とフロインドリッヒ吸着等温線、一次分解 の連鎖反応式を用いて解析した.連鎖反応式には、 有機物→NH₄→NO₃という反応を考慮した.計算結果 が測定結果を再現するよう、吸着等温線の分配係数 $K_d[cm^3-w/g-soil]$ と反応速度定数 k[/d]を決定した.また、 NH₄の溶存態と吸着態には異なる反応速度定数 $kdissolve \ blassoble \ blasso$

Fig.1 美験装直の做要, 試科の初期余件 Schematic of experimental apparatus and initial conditions of soils

三重畑土大学大学院生物資源学研究科 Graduate School of Bioresources, Mie University キーワード:窒素循環,不飽和水分移動,一次元カラム実験

結果と考察 Fig.2に, 7.5 cm 深の土中 EC の時間 変化を2種の土について示す.NH4添加開始を0d とした.実験開始直後,土中 EC は水の浸潤により 増加し,後に 0.1 mS/cm に減少した. NH4 添加によ り土中 EC は再び増加し,添加終了とともに減少 した. NH4 添加終了後(14 d 以降)の土中 EC は, 三重畑土では高く留まり緩やかに減少したが, 岩手 畑土では 0 d 時に近い値まで減少し,ほぼ一定と なった. Fig. 3 に, カラム下端からの排水中 NO3 濃 度の時間変化を2種の土について示す.NO3濃度 は 8 d 以降, 三重畑土では 400 mg/L, 岩手畑土 では 30 mg/L まで増加した. Fig. 4 に NH₄とNO₃の 土中分布を示す. 三重畑土については実験終了時 (Fig. 4a,c), 岩手畑土については NH4 添加終了時 と実験終了時(Fig. 4b,d)の分布を示した.実験終了 時の NH4 は, 両土で吸着により上層に多く分布した が, 溶存量に対する全量の比は各土で異なった. また,岩手畑土の NH4 全量は,三重畑土よりも 1 オーダー高かった. 実験終了時の NH4 全量の 到達深は,三重畑土では 14 cm, 岩手畑土では 7 cm であった. 岩手畑土の NH4 全量の到達深は, NH4 添加終了時からの 21 d で 2 cm 進行し, 溶存態 によるNH4の再分布が見られた.実験終了時のNH4 溶存態量は三重畑土の方が多かった. NO3 は下層 に分布し,三重畑土中の分布は岩手畑土中より 1オーダー高かった.

NH4 添加中の土中 EC の増加は,9 d の 7.5 cm 深に NH4 が少ない(Fig. 4b)ことから,NH4の吸着で 土粒子から離脱した陽イオンや添加した硫酸イオン によると考えられる. 三重畑土で14 d 以降に土中 EC が高く留まり,排水中 NO3 濃度が増加したのは, 上層での硝化によると考えられる. これに対し,岩手 畑土中の硝化はわずかであったと考えられる. Fig.4a,b の分布を満たすように計算すると,吸着等 温線の分配係数 K_d [cm³-w/g-soil]は,三重畑土で 4, 岩手畑土で 30 となった. また,NH4 溶存態と吸着態 の反応速度定数[/d]は両土ともに $k_{dissolve} = 0.5$, $k_{absorb} = 0.0005$ となった. NH4 の吸着態と溶存態の 反応速度定数の差異が,NH4 吸着特性の異なる土 中の NO3 の流出や分布の違いの一因と考えられる.

