津波により地下水が塩水化した沿岸域におけるパッカー付き揚水装置を用いた揚水試験

Pumping test using a pumping device with packing for the aquifer that was contaminated by the sea water that was brought by the tsunami of the Great East Japan Earthquake

〇石田 聡^{*}·白旗克志^{*}·土原健雄^{*}·紺野道昭^{*}·中里裕臣^{*}

ISHIDA Satoshi, SHIRAHATA Katsushi, TSUCHIHARA Takeo, KONNO Michiaki, NAKAZATO Hiroomi

1. はじめに

東日本大震災による津波で地下水が塩水化した宮城県南 部の沿岸域では、その後の降雨等によって浅層に淡水層が 形成されている.この淡水の利用可能性を明らかにするた め、オールストレーナ井戸の塩水域と淡水域の境界部に空 気パッカーを設置して井戸内の地下水流を遮断し、淡水域 のみから揚水するパッカー付き揚水装置を作成し、現地で 広く設置されている打ち込み式井戸を模した揚水試験を実 施した.

2. 研究方法

調査地である宮城県亘理町の沿岸部では震災前から東北 農政局によって分布的に口径 50mm の地下水観測井戸(以 下井戸と呼ぶ)が設置されており(東北農政局, 2015),本 研究ではこれらを利用して試験を実施した.これらの井戸 では地下水面下数 m まで EC が比較的低く(ここでは淡水 域と呼ぶ),それ以深では EC が深度とともに上昇する.

Fig.1 に今回製作した揚水装置の構成を示す. パッカー長は 0.5m とし, パッカーの上側に水圧・温度・EC 自記センサ(応用地質(株)製 S&DLminiEC メーター)および揚水ホースを配し, 揚水には吸い込み式ポンプ(ニッパツジャブスコ(株)製 Flojet Pump), 揚水量測定には電磁流量計(愛知時計電機(株)製 NW10-PTN), 揚水強度の調整にはモータースピードコントローラを用いた.

3. 0m (~7. 0m) (~7. 0m) (1=0. 3m) (1=0. 3m) (1=0. 3m) (1=0. 3m) (1=0. 2m) (1=0. 2m)

空気バルフ

気バルフ

ケーブルグリッフ

1

Construction of pumping system

揚水試験は2017年3月に実施した. 試 験では揚水前に井戸内の EC を深度別に 測定し,淡水域の下端にパッカー中心を 設置した後,2 時間の連続揚水を行った (地点Gのみ4.5時間). パッカー中心か ら取水口までの距離は1mである。Table1

に今回試験を実施した塩淡境界を有する

Table1	地下水位	・揚水井戸	『諸元	
pecifics of wells, gr	roundwater	table, and	depth	of packing

地点	А	В	C	D	Е	F	G
管頭標高	1.20	0.89	1.03	1.00	1.59	0.63	1.44
井戸深度	15	15	15	15	28	10	10
地下水位*	1.73	1.53	1.85	1.63	1.97	1.94	0.99
パッカー深度*	7.0	10.0	7.0	5.5	4.0	5.0	7.0
 単位m, [*] 管頭からの深度							

* 国立研究開発法人 農業・食品産業技術総合研究機構 農村工学研究部門, NARO, Institute for Rural Engineering キーワード:地下水,パッカー,塩水化,アップコーニング,水質

井戸の諸元,揚水試験前の地下水位,パッカー設置深度を示す.揚水量は基本的に 9L/min 程度と したが、水位低下が大きい井戸では安定的に揚水できる量とした。海岸線からの距離は地点A~D が約 3km, 地点 E が約 1km, 地点 F, G が約 0.4km である. 試験中は揚水した地下水の EC, pH, DO, ORP, 水温を適宜測定した.また試験終了直後と翌日に井戸内の EC を深度別に測定した.

3. 結果と考察

Table2 に各地点における試験結果(揚 水量,水位低下,EC 変化)を示す.ま た Fig.2 に D 地点と G 地点の揚水前後 ____ の井戸内 EC 鉛直分布を示す.

7 地点のうち 6 地点で揚水終了時の EC が揚水前の取水口付近の EC を下回 った. 特に地点 C, D, E における揚水 揚水量単位L/min, EC単位mS/m,*終了時・単位m** 取水口付近

終了時の EC は揚水前の井戸内 EC より低かった. また地 点 D の揚水終了直後の地下水面付近の EC は揚水前より低 くなっている(Fig.2 上段). この結果は、揚水装置の構造 は異なるが、2016年3月に同じ調査地で実施された揚水試 験(石田ら, 2016)と同様であった.

Fig.2 より、揚水終了直後における井戸内の EC は取水口 以深で上昇しており、その傾向は海岸に近く揚水時間が長 かった井戸 G でより顕著である. これは浅層での揚水によ り、より深層に存在していた EC の高い地下水が上昇した ことを示している. 揚水された地下水は, 井戸に向かって 水平方向に流動する EC の低い地下水と,鉛直方向に流動 する EC の高い地下水の混合物であり、揚水する地下水の EC は両者の混合バランスに依存すると考えられる.また, 井戸内の EC 分布は, 揚水翌日には揚水前の状態にほぼ戻 📓 っていることから, 揚水による EC の上昇は一時的かつ可 逆的であり、本試験による揚水量程度であれば、揚水によ って EC が上昇しても、一定時間揚水を停止すれば再度 EC の低い地下水を揚水することが可能であると考えられる.

本研究における留意事項としては、揚水試験直後に観測 Vertical distribution of EC in wells before and された井戸内 EC 分布が、帯水層内の EC 分布を正確に反 映していない可能性が挙げられ、今後検討していく必要が ある.

· · · -							
地点	А	В	С	D	Е	F	G
平均揚水量	9	6	8	9	3	10	9
水位低下量*	0.67	4.11	1.66	0.47	1.30	0.76	0.53
揚水前井戸内EC**	195	115	60	51	106	104	73
揚水開始時EC	209	123	57	47	67	97	87
揚水終了時EC	188	114	49	40	45	89	87

after pumping

謝辞 本研究の一部は住友財団環境研究助成, JSPS 科研費 15K07659 の支援を受けて実施した.また揚水装置の 作成にあたっては(株)アオイテックの大久保昌明氏,津坂喜彦氏に,試験の実施にあたっては東北農政局農村 環境課の藤元栄一地質官らにご協力頂いた.ここに感謝の意を表する.

引用文献 1) 東北農政局(2015),海岸地域における地下水調査「東北地区」(H23~H26)調査報告書, 19-20. 2) 石田聡ら(2016), 平成 28 年度農業農村工学会大会講演会講演要旨集, 5-41