Forchheimer 則に基づく非ダルシー流の数値解析モデル Numerical model for non-Darcy flow based on Forchheimer law

○泉 智揮^{*}・水田純也^{**} ○Tomoki IZUMI, Junya MIZUTA

1. はじめに

一般に、多孔質媒体中の水分移動にはダル シー則が適用される.しかしながら、粒径の 大きな砂や礫中の高動水勾配下での水分移動 では、ダルシー則が成立しない非ダルシー流 になることが指摘されている[1]. この非ダル シー流の運動方程式として, Forchheimer 式や Izbash 式が提案され、式中のモデルパラメー タについて議論されている(例えば[2], [3]). 非ダルシー流に関する問題を取り扱うために は解析モデルの構築が有益である. そこで, 著者らは、非ダルシー流の解析モデルを構築 し, 仮想領域を対象とした数値解析を示して いる[4]. 本研究では, 著者らが提案している 非ダルシー流の解析モデルによる解析結果と, 透水性の異なる試料を対象とした土層浸透実 験結果を比較し,本解析モデルの妥当性を検 証する.

2. 解析モデル

非ダルシー流の支配方程式は,連続式とナ ビエ・ストークス式に Forchheimer 則を付加 した運動方程式である.

$$\nabla \cdot \boldsymbol{u} = 0 \tag{1}$$

$$\frac{C_r}{n_w}\frac{D\boldsymbol{u}}{Dt} = -\frac{1}{\rho_w}\nabla P + v_E\nabla^2\boldsymbol{u} - a\boldsymbol{u} - b\boldsymbol{u}|\boldsymbol{u}| + \boldsymbol{g} \quad (2)$$

ここで, u は平均流速ベクトル, C_r は慣性係 数, n_w は間隙率, t は時間, ρ_w は水の密度, Pは圧力, v_E は有効動粘性係数(水の動粘性係 数 v_w /間隙率 n_w), a, b は Forchheimer 則の係 数, g は重力加速度ベクトルである. Forchheimer 則の係数であるa, bについては, 著者らのこれまでの解析モデル[4]では既往 のモデル[5]を採用しているが,ここでは, a を 透水係数の逆数, b をフィッティングパラメ ータとする. 支配方程式の離散化には MPS (Moving Particle Simulation) 法[6]を用いる. MPS 法は, 計算領域内に多数の粒子を配置し, 粒子間相 互作用モデルを用いて, 勾配, 発散, ラプラ シアンといった微分演算子をモデル化し, 微 分方程式を離散化する手法である.

支配方程式の境界条件として,圧力に関し ては,壁面において圧力勾配ゼロのノイマン 境界,自由水面において 0 Pa のディリクレ境 界とする.また,流速に関しては,壁面にお いて流速 0 m/s のディリクレ境界,流入部に おいて流速を与えるディリクレ境界とする.

3. モデルの検証

3.1 浸透実験

表1に示す物性をもつ3種類の試料,砂利 (大),砂利(小),ガラスビーズに対して, 図1に示すような土層を作成する.流入側の 水位を最大6段階(最小動水勾配(1)~最大動 水勾配(6))に変化させ,流速 uobs と動水勾配 Jの関係を調べる.流速と動水勾配はそれぞ れ以下の式で求める.

$$u_{obs} = \frac{Q}{h_1 B}$$
 (3), $J = \frac{h_2 - h_1}{L}$ (4)

ここで, *Q* は浸透流量(m³/s)で, *B* は堤体幅, *L* は流下方向の試料長さである. *h*₁ は流出部の水 深, *h*₂は流入部の水深である.

3.2 解析条件

本解析では、MPS 法の解像度(粒子径)を 0.01 m とする.図2に、解析領域と解析の初 期状態の1例を示す.本解析モデルは浸透流 のみを対象とする(水流と浸透流の連成モデ ルではない).したがって、領域の右側は計算 のための助走区間である.土層実験の動水勾 配を再現するために、水位の段階ごとに流入 高さを設定した解析領域において、計算時間

^{*} 愛媛大学大学院農学研究科, Graduate School of Agriculture, Ehime University

^{**} 愛媛大学農学部, Faculty of Agriculture, Ehime University

キーワード:非ダルシー流,数値解析,粒子法

ステップを 1.0×10⁻³から 1.0×10⁻⁴秒に設定し, 定常状態まで計算する.フィッティングパラ メータとした係数 b については,実験流速を 再現するように試行錯誤により決定する.

3.3 検証結果

試料末端部と試料中央部の流速について解 析値と実験値との誤差(=解析値-実験値)を 表2に示す.また,bの値は,砂利(大),砂 利(小),ガラスビーズに対してそれぞれ 60 m⁻¹, 60 m⁻¹, 110 m⁻¹であった.

表 2 から, 流速の誤差は末端部で 0.065 m から 0.134 m, 中央部で 0.022 m から 0.080 m の範囲であり, 末端部で誤差が大きいことが わかる.また, 勾配が急になるほど, 粒径が 大きくなるほど誤差が大きくなることがわかる.これらの誤差はいずれも正値, すなわち, 解析値が実験値よりも大きいため, 解析モデ ルの修正が必要であるといえる.

4. まとめ

非ダルシー流の解析モデルを検証するため に、土層実験結果の再現性について調べた. その結果,流速の解析値は実験値より大きく, 解析モデルの修正が今後の課題である.

表1:試料と物性値

図1:浸透実験の概要

図2:解析領域と解析の初期状態

表2:流速の解析値と実測値との誤差(m/s)

勾配	(1)		(2)		(3)	
	末端部	中央部	末端部	中央部	末端部	中央部
砂利大	0.094	0.034	0.100	0.038	0.126	0.062
砂利小	0.096	0.034	0.104	0.040	0.120	0.056
ガラス 5mm	0.065	0.022	0.067	0.025	0.071	0.033
	(4)					
勾配	(4	4)	(5	5)	(6	6)
勾配	(4 末端部	4) 中央部	(5 末端部	5) 中央部	(6 末端部	5) 中央部
勾配 砂利大	(4 末端部 0.134	4) 中央部 0.070	(5 末端部 0.133	5) 中央部 0.080	(6 末端部 -	5) 中央部 -
勾配 砂利大 砂利小	(在 末端部 0.134 0.118	4) 中央部 0.070 0.062	(5 末端部 0.133 -	5) 中央部 0.080 -	(6 末端部 - -	5) 中央部 - -

謝辞

本研究は JSPS 科研費 26850154 を受けた.

引用文献

[1] Bear, J.(1972): Dynamics of Fluid in Porous Media, Elsevier, pp.176 - 184. [2] Sidiropoulou, M.G., et al. (2007): Determination of Forchheimer equation coefficients a and b, Hydrological Processes, 21, pp.534-554. [3] Soni, J.P., et al. (1978): An experimental evaluation of non-Darcian flow in porous media. J. Hydrol., 38, pp.231-241. [4] 泉 智揮(2016): MPS 法を用いた非ダルシー 流の数値シミュレーション, 日本雨水資源化システ ム学会第 24 回研究発表会講演要旨集, pp.8-12. [5] Akbari, H. and Namin, M.M. (2013): Moving particle method for modeling wave interaction with porous structures, Coastal Engineering, 74, pp.59-73. [6] Koshizuka, S., Tamako, H., and Oka, Y. (1995): A particle method for incompressible viscous flow with fragmentation, Computational Fluid Dynamics J., 4(1), pp.29-46.