不飽和土の繰り返し載荷時のストレス―ダイレタンシー関係について

Stress-dilatancy relationships of unsaturated soil during cyclic triaxial compression loading

ツン ツン ウィン・佐藤友孝・○向後雄二 Tun Tun Win, T. Sato, Y. Kohgo

<u>1. はじめに</u>

フィルダム等の土構造物のレベル2地震動での耐震性を検討する場合,変形量によってその安定 性が議論される。現状では,等価線形化法による応答解析を行い,その計算された地震時の応力 および加速度履歴を用いて,Newmark 法等によって変形量の計算が行われる。つまり,応答解析 と変形の解析が分離されていて,変形はすべりによる変形だけが見積もられている。弾塑性構成式 を用いた解析では,応答解析を行うだけで,変形と崩壊予測を行うことも可能である。しかし,繰り 返しを考慮した弾塑性モデル¹⁾⁻³⁾はいくつか提案されているが,地震時の変形を十分な精度で予 測できる現状にはない。特に,フィルダム等の土構造物は不飽和土で構成されている。このような不 飽和土の繰り返しを考慮した弾塑性モデル⁴⁾も提案されているが,十分な精度で変形量を予測で きる段階にない.ここでは,筆者らによって提案されている弾塑性モデル⁴⁾の精度向上をはかる目 的で,不飽和土のストレスーダイレタンシー関係を繰り返し三軸圧縮試験の結果から検討する。

<u>2. サクションー定繰り返し三軸圧縮試験の方法</u>

ー定サクション下で繰り返し三軸圧縮 試験を実施した。用いた試料は、 DLクレ — ーと呼ばれる非塑性のシルトである。その 物理特性を表-1に示す。三軸圧縮試験では、 直径 5cm、高さ 10cm で、目標乾燥密度が 1.30 g/cm³になるように静的に 5 層に分け て締固めた。締固め時の含水比はほぼ 17% であった。供試体作製時の条件は表-2 に示 す通りである。作用サクション($s = u_a - u_w$; u_a : 間隙空気圧、 u_w : 間隙水圧)の値は 0, 10, 30, 60, 90kPa であり、ネット拘束圧(σ_{3net} = $\sigma_3 - u_a$)は 100kPa である。載荷はひずみ制御 の圧縮と伸張の両振りとし、載荷速度は 0.05%/min とした。10 回繰り返し荷重を与えた

後,軸ひずみ15%まで載荷した。用いた三軸圧

表-1 DL クレーの物理特性

Density of soil particle	$\rho_{\rm s}~({\rm g/cm^3})$	2.650
Consistency		NP
Compaction test	$ ho_{\rm dmax}({\rm Mg/m^3})$	1.52
	w_{opt} (%)	21.2
Maximum Particle size	d_{\max} (mm)	0.105
Coef. of Permeability	<i>k</i> (m/s)	6.68×10 ⁻⁷

表-2 三軸圧縮試験供試体初期条件

s	(kPa)	w ₀ (%)	$\rho_{\rm d}~({\rm g/cm}^3)$	e_0	S _{r0} (%)
	0	18.14	1.303	1.034	46.48
	10	17.10	1.317	1.013	44.74
	30	17.66	1.318	1.011	46.28
	60	18.45	1.293	1.049	46.59
	90	17.39	1.300	1.038	44.39

縮試験機の特徴は次の通りである。三軸室は,内部セル上部に外体積のリファレンス水位 用の水槽を設けた二重セル,外体積測定用の差圧計,差圧計を用いた排水量測定装置,

東京農工大学大学院 Graduate School of Agriculture, Tokyo University of Agriculture and Technology, キーワード: ストレス・ダイレタンシー・不飽和土・弾塑性モデル セラミックディスク(空気侵入値 100kPa)を設置したペディスタル, 撥水フィルタを設置 したキャップからなる。サクションは間隙空気圧を所定の圧力まで上昇させて負荷した。

3. 試験結果

向後⁵⁾の提案した式 から有効応力を算定し た。算定に必要パラメ ータは空気侵入値(サ クション)s_e = 10 kPa, a_e = 33.3 kPa である。s = 10, 30, 60, 90 kPa で はそれぞれ 10.0, 22.5, 30.0, 33.5 kPa が基底応 [kPa]

Stress ratio q/p'

カに加算される。試験の結果 の一部を図-1に示す。図中の せん断ひずみ γ は(= $\epsilon_a - \epsilon_r; \epsilon_a$: 軸ひずみ, ϵ_r :半径方向ひずみ) で定義した。これらの試験か ら,次のような点が明らかで ある。①繰り返し回数の増加 とともにヒステリシスループ は小さくなる。②再載荷線の 傾きはサクションの増加ととも に大きくなる。③どの供試体で も繰り返し回数の増加ととも

にヒステリシスループは一定の状態に近づく。④体積ひずみは最初の繰り返しで大きな値 を示す。⑤サクションの小さな供試体ほど大きな体積変化を示す,である。図-2 はストレス ーダイレタンシー関係を示す。図中の上添え字 p は塑性ひずみを示す。弾性ひずみの増分はそれ ぞれ初期のせん断弾性係数と膨張指数から計算し、塑性ひずみの増分はひずみ増分から弾性ひ ずみ増分を差し引くことによって求めた。1 回目の除荷でのストレスーダイレタンシー関係はばらつき が大きいが、その後の関係はおおむね線形な関係が成り立ち、その線の傾きは載荷除荷およびサ クションの大きさに依存しないようである。今後はこの関係から塑性ポテンシャル関数の同定を行う 予定である。

<u>参考文献</u>:1) 橋口公一,最新弾塑性学,朝倉書店,1-205, 1990. 2) Dafalias, Y. F. et al., Soil Mechanics-Transiet and Cyclic Loads, Wiley, 253-282, 1982. 3) Pastor, M. et. al., ,Int. J. Numer. Anal. Methods Geomech. 14, 151-190, 1991. 4) Kohgo, Y., Unsaturated Soils, CRC Press, 857-862, 2010. 5) Kohgo, Y. et. al. Soils and Foundations 33(4), 49-63, 1993.