土のキャピラリーバリア機能を利用した盛土式廃棄物貯蔵施設の構造規模の決定と土中水分の計測点検 Structural design and soil-water monitoring of shallow land waste repository using capillary barrier of soil

> ○森井俊廣¹•黒田清一郎²•武藤健太³•竹内宏起⁴ Toshihiro MORII¹, Seiichiro KURODA², Kenta MUTOH³ and Kouki TAKEUCHI⁴

1. はじめに

砂層とその下部に礫層を重ねた層 状地盤では、土のキャピラリーバリ ア(Capillary barrier: CB)効果によ り、境界面の上部の砂層内で降下浸 潤水が捕捉され、集積する。境界面 に傾斜をつけておくと、境界面の上

図1 CB を利用した低盛土式廃棄物貯蔵施設の提案

部に捕捉された間隙水は、上部の砂層内を集積流として傾斜方向に流下し、境界面以深の領域は一定の範囲にわたって水の浸入から保護される。筆者らは、これまで、降雨浸潤を抑制し危険な廃棄物あるいは低レベルの放射性廃棄物を水理学的に安全に隔離するため、土の CB 機能を利用した低盛土式廃棄物貯蔵施設(図1)を提案してきた¹⁾。廃棄物埋立て層の変形に対する追随性が良いこと、透気性をもつため廃棄物の自然還元に効果的であり、さらには自然材料のみを用いていることから長期間にわたって CB 機能が持続するという優れた点をもつ。一方、図1の青矢印で示すように、境界面上を流下する集積流は、しだいに質量を増すため、境界面上のある位置で下方への鉛直浸潤が起き遮水機能が失われる。鉛直浸潤が起きる位置までの境界面の水平長さを限界長といい、CB 盛土の構造規模や貯蔵量を決定するうえで重要な設計パラメータとなる。

本文では、限界長の発現特性を室内大型土槽試験により検証するとともに、長期にわたる供用中

の遮水機能つまり CB 土層内の土中水分 量を計測点検するため,地表設置型の地 中レーダ法 (Ground-penetrating radar : GPR)の適用性を探った。

2. 限界長の推定

限界長の大きさには,構造因子として 境界面の傾斜角,材料因子として砂と礫

の飽和・不飽和水分特性,ならびに外的因子として浸潤強度が関与する。これらの因子を取り込んだ理論的な限界長の推定式がいくつか提案されており、その中で、Steenhuisらの提案する推定式²⁾が比較的精度が良いとされている。この推定式の精度あるいは実務性を調べるため、図2に示す土槽試験装置により限界長を測定し対比した。土槽内に粗粒材(硅砂1号;代表粒径5~6mm,G)を厚さ5cm,続いてその上に細粒材(珪砂6号;代表粒径0.25mm,SF)を厚さ20cmで締固めたのち、給水槽底面に5cm×5cmあたり1本の割合で取り付けた工業用注射針を通して、締固めた CB 地盤に雨滴給水した。鉛直浸潤の位置つまり限界長は、土槽の底面に30cm 間隔で取り付けた高さ3cm の仕切り板によって礫層内に浸潤した水を集め、これを土槽外

図2 限界長を測定するための室内土槽試験装置

¹新潟大学教育研究院自然科学系(農学)フェロー Faculty of Agriculture, Niigata University, ² 農研機構農村工学研究 部門 NARO, ³ 新潟県庁 Niigata Prefectural Government, ⁴ 新潟市役所 Niigata City Government キーワード: 土構造, 保水性, 水分移動; キャピラリーバリア, 低盛土式廃棄物貯蔵施設 に導きビーカーで計量した。

図3に両者の比較を示す。同図には公表されている室内試験結果と野外での測定結果も加えている。おおむね, Steenhuisらの推定式の実務性を確認することができる。

3. GPR による土中水分量の計測

地表設置型の GPR 装置によると,送信アンテナから電磁波を 輻射し,誘電率が明瞭に異なる境界面(ここでは砂層と礫層の境 界面)で反射して受信アンテナに戻るまでの時間 T(往復走時) を測定できる。CB 土層の砂礫境界面の深さ D は既知であるから, この T から砂層での電磁波の伝播速度 V を求めることができる。 砂層の比誘電率を ε,とすると,V は次のように表される。

$$V = D/(T/2) = c/\sqrt{\varepsilon_r} \tag{1}$$

ここで c は空気中での電磁波の速度(=30 cm/ns)である。砂層は 固相,気相および液相で構成されるから,それぞれの相の比誘電 図 4 CB 土層における GPR 計測

率を ε_s , ε_a (=1) および ε_w (=80), そして全容積に対する各相の容積比率を θ_s , θ_a および θ_w で表す と、電磁波伝播の連続性より、次の関係式が得られる³⁾。

$$\sqrt{\varepsilon_r} = \theta_s \sqrt{\varepsilon_s} + \theta_a \sqrt{\varepsilon_a} + \theta_w \sqrt{\varepsilon_w} = \theta_s \left(\sqrt{\varepsilon_s} - 1\right) + 7.9 \cdot \theta_w + 1 \tag{2}$$

式(1)と(2)より、T は液相率つまり体積含水率 θ_w とともにリニアに変化することが分る。ここで、乾燥状態($\theta_w=0$)での計測により、あらかじめ、式(2)の最右辺の第1項を特定しておけば、降雨浸潤などを受けた砂層の Tを測ることにより、式(1)および式(2)から θ_w を推定することが可能となる。

これを調べるため、図4に示すように、礫層を 60cm 平方に敷設しその上に厚さ 30cm に乾燥状態の砂を締め固めた CB 土層を作製し、初期の気乾状態 ($\theta_w=0$)、ならびに θ_w が 0.01 ずつ増えていくように土層表面から給水を行いながら、GPR 法 (1.5GHz) により T の計測を行った。この T より算出した $\int \varepsilon_r \varepsilon_r$ 、その時点での土層の θ_w と対応させると、図5の〇のようになった。今後精査が必要な若干のかたよりを伴うものの、 $\int \varepsilon_r \ge \theta_w$ との間の線形関係を確認できる。図中の直線は、初期状

態($\theta_w=0$)の計測値をもとにして,式(2)を描いたもの である。計測した〇とおおむね良好に対応しているこ とから,GPR 計測により,式(2)を通して,砂層内の体 積含水率を推定することが十分に可能であるといえ る。図5における2点の●は,あらかじめ含水調整を した砂を締め固めた,均一な体積含水率状態の土層に おける測定値である。表面給水により深さ方向に水分 分布をもつ場合の計測値〇とほぼ一致していること から,GPR 法で計測/推定される θ_w は,水分分布に は依存せず,対象領域内に存在する土中水のマスとし ての容積量を捉えたものであることがわかる。

4. まとめ

危険な廃棄物や極低レベル放射性廃棄物あるいは放射能汚染物質(土壌等)を水理学的に安全に 隔離保管するための低盛土式廃棄物貯蔵施設を提案し、その構造設計に必要な限界長(遮水範囲) の推定式の実務性を確認した。合わせて、長期供用中における遮水機能の計測点検が可能な地表設 置型 GPR 法の適用性を明らかにした。本研究を進めるにあたり、科学研究費補助金基盤研究(A)(課 題番号 16H02580;研究代表者 黒田清一郎)ならびに住友財団環境研究助成より貴重なご支援をい ただいた。ここに記して深く感謝するしだいである。

参考文献:1) 森井俊広ら, 第 2 回環境放射能除染研究発表会要旨集, p.63, 2013. 2) Steenhuis, T. S., et al., Water Resources Research, 27(8), 2155-2156, 1991. 3) 黒田清一郎ら, 農業土木学会誌, 74(11), 7-10, 2006.